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1 Introdu
tion

In the past, the study of 
olloid 
ows indu
ed by ele
tri
 �elds has fo
used

on the relationship between the velo
ity of 
harged parti
les and the ele
-

tri
 for
es a
ting on them. Re
ent work has shown that interesting (and

potentially useful) 
ows o

ur even in the 
ase of un
harged parti
les [2℄.

Perhaps the most surprising result is that at steady state, a nonuniform zeta

potential is indu
ed on the surfa
e of 
ondu
ting 
olloidal parti
les whi
h

a
ts to produ
e a 
ow that \su
ks in 
uid along the �eld axis and eje
ts it

radially" but generates no net for
e on the parti
le [2℄.

The purpose of this paper is to explore the physi
al foundations of su
h


ows and attempt to approximate the results found in Professor Bazant's

work for spheri
al 
olloidal parti
les. We begin by examining the origins

of interfa
ial slip velo
ity in ele
troosmosis whi
h leads us to 
onsider solu-

tions of the ele
trodynami
s problem and the Gouy-Chapman model for the


harged interfa
e. Finally, we pull all the pie
es together to solve the 
ow

problem around a stationary un
harged sphere in a uniform ele
tri
 �eld.

Throughout the analysis, ve
tor harmoni
 methods will be used whenever

possible.

2 Interfa
ial slip velo
ity in ele
troosmosis

2.1 Physi
al pi
ture

The presen
e of a 
harged interfa
e in an ele
trolyte solution disrupts the

balan
e between positive and negative ions resulting in the formation of

di�use 
harge layers at the interfa
e. The thi
kness of the di�use 
harge

layer is on the order of the Debye s
reening length, �

�1

, and the 
harge
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Figure 1: Di�use layer of negative 
ounterions (in solution) at a positively


harged interfa
e.

density within the di�use layer, �

e

, de
ays roughly exponentially in distan
e

from the 
harged interfa
e [1℄. The presen
e of 
harge within the di�use layer


hanges its 
uid dynami
s relative to the bulk and gives rise to a boundary

layer at the 
harged interfa
e (Figure 1).

Sin
e the surfa
e 
harge and di�use 
harge layer do not form a rigid

system, they move independently under the in
uen
e of external ele
tri


�elds; they move in opposite dire
tions be
ause they have opposite signs.

Furthermore, be
ause ions drag 
uid with them as they move, the net e�e
t

is an apparent slip velo
ity at the interfa
e at ma
ros
opi
 s
ales [1℄.

2.2 Derivation of the slip velo
ity

Within the boundary layer, the interfa
e is almost 
at and the ele
tri
 �eld is

approximately 
onstant and parallel to the interfa
e

1

, so the 
uid is reason-

ably modelled by unidire
tional 
ow over an in�nite plane of 
harge under

the in
uen
e of an 
onstant tangential ele
tri
 �eld.

For this type of 
ow, the Navier-Stokes equations are

v

x

� v

x

(y) (1)

�

�u

�t

= �

�P

�x

+ �

�

2

v

x

�z

2

+ �

e

(z)E

x

(z); (2)

1

At steady state, no 
urrent 
an 
ow into the surfa
e, so, for Ohmi
 materials, the

normal 
omponent of the ele
tri
 �eld must be zero.
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where �

e

(z) and E

x

(z) are the 
harge density and ele
tri
 �eld in the x-

dire
tion at a distan
e z from the interfa
e. De�ning the nondimensional

variables

v

0

x

=

v

x

V

; x

0

=

x

R

; z

0

=

z

Æ

; t

0

=

t

(R=V )

; P

0

=

P

P

0

(3)

where R is the length s
ale of the 
olloid parti
le, V is the ma
ros
opi
 speed

of the parti
le, and Æ is the width of the boundary layer, the nondimension-

alized form of equation (2) be
omes

�

V

2

R

�v

0

x

�t

0

= �

P

0

R

�P

0

�x

0

+

�V

Æ

2

�

2

v

0

x

�z

02

+ �

e

(z)E

x

(z): (4)

For small parti
les in aqueous solutions, the Re �

V R

�

� 1, so the 
har-

a
teristi
 pressure is given by P

0

=

�V

R

. With this 
hoi
e of P

0

and some

rearrangement, equation (4) be
omes

Re

Æ

2

R

2

�v

0

x

�t

0

= �

Æ

2

R

2

�P

0

�x

0

+

�

2

v

0

x

�z

02

+

Æ

2

�V

�

e

(z)E

x

(z): (5)

Sin
e Re � 1 and Æ=R � 1, the inertial and pressure terms are negligible

leaving only the vis
ous for
e to balan
e ele
tri
 for
es. Thus, the governing

equation in dimensional form is

�

�

2

v

x

�z

2

+ �

e

(z)E

x

(z) = 0: (6)

To solve this equation, re
all that for steady state systems, the ele
tri


�eld and 
harge density 
an be related to a potential fun
tion, 	, by

E = �r	 (7)

�

e

= �

�

4�

r

2

	: (8)

For this system, the potential 
an be written as

	 = �E

1

x+	

s

; (9)

where E

1

is the tangential ele
tri
 �eld felt at the outer edge of the bound-

ary layer and 	

s

is the potential due to the surfa
e and di�use 
harge. Note

that by symmetry,

�	

s

�x

= 0 =

�	

s

�y

. Thus,

E

x

= E

1

(10)

�

e

= �

�

4�

�

2

	

s

�z

2

(11)
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Substituting these results into equation (6), the governing equation be
omes

�

�

2

v

x

�z

2

�

�

4�

E

1

�

2

	

s

�z

2

= 0: (12)

This equation 
an be integrated exa
tly subje
t to the following bound-

ary 
onditions:

1. v

x

= 0 at y = 0 (no-slip 
ondition),

2. 	

s

(0) = � at y = 0 (de�nition of the zeta potential),

3.

�v

x

�z

= 0 as z !1 (mat
hing between inner and outer velo
ity �elds),

and

4.

�	

s

�z

= 0 as z !1 (E

?

= 0 at outer edge of boundary layer).

to give

v

x

=

�

4��

[	

s

(y)� �℄E

1

: (13)

The slip velo
ity observed outside on ma
ros
opi
 s
ales is the value of v

x

at the outer edge of the boundary layer.

v

s

= lim

z!1

v

x

=

�	

�

4��

E

1

; (14)

where 	

�

is de�ned to be the potential di�eren
e between the bulk solution

and surfa
e of the 
harged interfa
e.

Several important observations should be made about the slip velo
ity.

First, it is parallel to the interfa
ial surfa
e. Se
ond, it is proportional to the

tangential ele
tri
 �eld outside the boundary layer and to the di�eren
e in

ele
tri
 potential between the bulk solution and the interfa
e. Thus, if the

ele
trodynami
s problem 
an be solved independently of the 
ow, equation

(14) spe
i�es the boundary 
onditions for the 
uid 
ow problem. The two

main issues involved in solving the ele
trodynami
s problem,

� determining the ele
tri
 �eld at the outer edge of the boundary layer

and

� 
al
ulating the potential di�eren
e between the bulk and the interfa
e

are dis
ussed next.
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3 The ele
trodynami
s problem

Steady state ele
trodynami
 problems have the 
onvenient property that

the ele
tri
 �eld 
an always be related to a s
alar potential fun
tion that

is harmoni
 in regions with zero 
harge density. For problems with spher-

i
al or 
ylindri
al symmetry and linear boundary 
onditions, this property

makes it possible to easily 
ompute the ele
tri
 �eld using ve
tor harmoni


methods. In this se
tion, ve
tor harmoni
 methods are applied to solve ele
-

trodynami
s problems that are relevant to 
olloidal 
uid 
ows resulting from

uniform, applied ele
tri
 �elds. In all 
ases, it is assumed that the applied

ele
tri
 �eld is E

0

, insulators are linear diele
tri
s (D = �E, � the diele
tri



onstant), and 
ondu
tors obey Ohm's law (J = �E, � the 
ondu
tivity).

For 
olloid 
ow problems, the relevant information to extra
t from the

ele
trodynami
s problem are the ele
tri
 �eld at the external surfa
e and the

free surfa
e 
harge. The ele
tri
 �eld at the external surfa
e is important

be
ause it determines the ele
tri
 �eld at the outer edge of the 
uid boundary

layer; the free surfa
e 
harge is important be
ause, as will be shown in

se
tion 4, it 
an be dire
tly related to the potential di�eren
e between the

bulk solution and the 
harged interfa
e.

3.1 Jump 
onditions at material interfa
es

Be
ause 
olloidal 
ow problems often involve materials with di�ering ele
-

tri
al properties, it is important to understand the jump 
onditions on the

ele
tri
 �eld at material interfa
es.

For linear materials, the Maxwell equations for the ele
tri
 �eld at steady

state are

r �D = �r �E = 4��

e

(15)

r�E = 0; (16)

where E and D are the ele
tri
 �eld and displa
ement. The integral forms

of these equations lead to the jump 
onditions

(D�

^

D) � n = �(E�

^

E) � n = 4�� (17)

(E�

^

E) � t = 0; (18)

a
ross material interfa
es, where n is the unit normal and t is any unit

tangent to the surfa
e de�ned by the material interfa
e and � is the surfa
e

density of free 
harge. For moving interfa
es, the se
ond equation be
omes

(E�

^

E) � t = �(n � �)[n� (B�

^

B)℄ � t (19)

5



where v = 
� is the velo
ity of the interfa
e and B is the magneti
 �eld

[7℄. Fortunately, for Stokes 
ow problems, v is very small 
ompared to the

speed of light, so the tangential jump 
ondition for the ele
tri
 �eld is well

approximated by equation (18).

An important feature of steady state problems is that the 
urrent density

must be divergen
e free, r � J = 0. In integral form, this 
ondition on the


urrent density implies that there 
an be no jump in the normal 
omponent

of the 
urrent density a
ross any surfa
e. That is if a surfa
e, S, has normal

ve
tor, n,

(J�

^

J) � n = 0: (20)

For 
ondu
ting materials that obey Ohm's law, this jump 
ondition for the


urrent density translates dire
tly into a jump 
ondition on the ele
tri
 �eld:

(�E� �̂

^

E) � n = 0: (21)

where n is de�ned as for equations (17) and (18).

At �rst glan
e, equations (17) and (21) seem to be independent normal

jump 
onditions for the ele
tri
 �eld. Fortunately, they are 
onsistent due

to the presen
e of free surfa
e 
harge. Sin
e equation (21) is self 
ontained,

it is easier to use in solving the ele
trodynami
s problem. The ele
tri


displa
ement jump 
ondition 
an then be used to �nd the amount of free

surfa
e 
harge present at material interfa
es.

3.2 Condu
ting material 
ontaining a spheri
al 
ondu
tivity

anomaly

Suppose that a sphere of radius a with 
ondu
tivity �̂ is embedded within

a 
ondu
ting material with 
ondu
tivity � (Figure 2).

To determine the ele
tri
 �eld, we pro
eed by seeking a potential fun
-

tion, 	, that is a linear 
ombination of E

0

and the ve
tor harmoni
s. The

appropriate boundary 
onditions for this problem are

1. E! E

0

as r !1,

2. (E�

^

E) � t = 0 at r = a, and

3. (J�

^

J) � n = (�E� �̂

^

E) � n = 0 at r = a.

In the region outside the 
ondu
tivity anomaly, we use the exterior ve
tor

harmoni
s to obtain

	 = �E

0

� x+ �

E

0

� x

r

3

: (22)
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Figure 2: Spheri
al 
ondu
tivity anomaly with 
ondu
tivity �̂ embedded

within a 
ondu
ting material with 
ondu
tivity �.

Similarly, we obtain

^

	 = �̂E

0

� x (23)

for the potential within the 
ondu
tivity anomaly. Thus, the 
orresponding

ele
tri
 �elds are

E = E

0

� �

E

0

r

3

+ 3�

(E

0

� x)x

r

5

(24)

^

E = ��̂E

0

: (25)

Applying the boundary 
onditions, we �nd that

1. is automati
ally satis�ed by the 
hoi
e of 	,

2. 1�

�

a

3

= ��̂, and

3. �

�

1 + 2

�

a

3

�

= ��̂�̂.

Solving this system of equations for � and �̂ gives � = a

3

�

��1

�+2

�

and �̂ =

�

�3

�+2

�

where 
 = �̂=�. So, the interior and exterior potentials are

	 = �

 

1�

�

a

r

�

3

�


 � 1


 + 2

�

!

E

0

� x (26)

^

	 =

�

�3


 + 2

�

E

0

� x: (27)

7



The 
orresponding ele
tri
 �elds are

E =

 

1�

�

a

r

�

3

�


 � 1


 + 2

�

!

E

0

+ 3

�

a

r

�

3

�


 � 1


 + 2

�

(E

0

� n)n (28)

^

E =

�

3


 + 2

�

E

0

: (29)

As a side note, it is interesting to observe that these potentials and �elds are

the same as those for a spheri
al diele
tri
 material with diele
tri
 
onstant


 in a va
uum under the in
uen
e of a uniform applied ele
tri
 �eld E

0

.

The important information to extra
t from these potentials are the ele
-

tri
 �eld immediately outside of the sphere and the surfa
e 
harge on the

sphere. For this problem, these are

E =

�

3


 + 2

�

E

0

+ 3

�


 � 1


 + 2

�

(E

0

� n)n (30)

� =

1

4�

�

E�

^

E

�

� n =

3

4�

�


 � 1


 + 2

�

(E

0

� n) (31)

be
ause � = 1 for 
ondu
tors

2

.

3.3 Insulating sphere embedded in a 
ondu
tor

Suppose that an insulating sphere of radius a with diele
tri
 
onstant � is

embedded within a 
ondu
ting material with 
ondu
tivity � (Figure 3).

As in the previous 
ase, we seek a potential fun
tion, 	, that is a lin-

ear 
ombination of E

0

and the ve
tor harmoni
s. For this problem, the

appropriate boundary 
onditions are

1. E! E

0

as r !1,

2. (E�

^

E) � t = 0 at r = a, and

3. J � n = �E � n = 0 at r = a.

The last boundary 
ondition arises be
ause no 
urrent 
an 
ow through the

insulating sphere. Be
ause the only di�eren
e between this and the previous

problem are the boundary 
onditions, the same potential fun
tions 
an be

used:

	 = �E

0

� x+ �

E

0

� x

r

3

(32)

^

	 = �̂E

0

� x: (33)

2

A
tually, for \physi
al" 
ondu
tors that are �nite in extent, � may e�e
tively di�er

from 1 due to the �nite a

umulation of 
harge at the 
ondu
tor boundaries.
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Figure 3: Insulating sphere with diele
tri
 
onstant �̂ embedded within a


ondu
ting material with 
ondu
tivity �.

Applying the boundary 
onditions, we �nd that

1. is automati
ally satis�ed by the 
hoi
e of 	,

2. 1�

�

a

3

= ��̂, and

3. �

�

1 + 2

�

a

3

�

= 0.

Solving for � and �̂, we obtain � = �

a

3

2

and �̂ = �

3

2

. With these values of

� and �̂, the potential fun
tions are

	 = �

 

1 +

1

2

�

a

r

�

3

!

(E

0

� x) (34)

^

	 = �

3

2

E

0

� x: (35)

Thus, the ele
tri
 �eld is given by

E =

 

1 +

1

2

�

a

r

�

3

!

E

0

�

3

2

�

a

r

�

3

(E

0

� n)n (36)

^

E =

3

2

E

0

: (37)

For this problem, the ele
tri
 �eld immediately outside of the sphere is

E =

3

2

E

0

�

3

2

(E

0

� n)n (38)
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and the surfa
e 
harge is

� =

1

4�

�

E� �

^

E

�

� n = �

3�

8�

(E

0

� n): (39)

As would be expe
ted, the solution for this problem agrees with the results

of the previous se
tion in the limit that 
 = �̂=�! 0.

A few observations should be made about equations (38) and (39). First,

the exterior ele
tri
 �eld at the sphere's surfa
e is purely tangential be
ause

the surfa
e 
harge that a

umulates during pre-steady state 
urrent 
ow

a
ts to keep external ele
tri
 �eld lines from entering the sphere. Se
ond, a

greater polarizability of the material in the sphere results in a larger surfa
e


harge build up. This e�e
t arises be
ause a highly polarizable material will

respond to the ele
tri
 �eld by pla
ing a large amount of bound 
harge at

the poles of the sphere. To balan
e the bound 
harge, a 
orrespondingly

high amount free surfa
e 
harge is required at the poles.

Finally, it is important note that the results of this problem are appli-


able regardless what the 
harge 
arriers are in the 
ondu
tor. That the


arriers 
annot 
ow between the 
ondu
tor and the material in the sphere

is the signi�
ant feature of the system. Therefore, analysis of this type of

problem is dire
tly appli
able to the situation of a metal sphere pla
ed in an

non-rea
ting ele
trolyte solution be
ause the metal sphere is impenetrable

to ions in solution. In this 
ase, the �nite bounds of the metal sphere and

the fa
t that the solution is an ele
tron insulator gives the metal an e�e
tive

diele
tri
 
onstant greater than 1 due to 
harge build up at the surfa
e. For


olloidal 
uid 
ows, it is this interpretation of an insulator embedded within

a 
ondu
tor that is relevant.

4 The 
harged interfa
e model

Having solved the ele
trodynami
s problem, it remains to 
al
ulate the po-

tential di�eren
e, 	

�

, between the bulk solution and the 
harged interfa
e.

It turns out that 	

�


an be related to the surfa
e density of free 
harge

using a model for the 
harged interfa
e.

There are many models of the 
harge distribution that arises at 
harged

interfa
es. For histori
al reasons, these are known as double layer models

[3℄. The simplest model that gives a relation between the free surfa
e 
harge

is the Gouy-Chapman model that was developed in the early 1900's. In this

model, the ions in solution form a di�use layer at the interfa
e (Figure 4).

In the Gouy-Chapman model, the 
harged interfa
e is assumed to be in

10



Figure 4: Di�use layer of negative 
ounterions (in solution) at a positively


harged interfa
e. (The only di�eren
e between this �gure and Figure 1 is

the 
oordinate system.)

thermal equilibrium

3

. So, the 
on
entration of ions obeys Boltzmann's law

n

i

(x) = n

0

i

exp

�

�z

i

e	

Æ

kT

�

(40)

where n

i

(z) is the 
on
entration of the i-th spe
ies at a distan
e z from the

interfa
e, n

0

i

is the bulk 
on
entration of the i-th spe
ies, z

i

is the valen
y

of the i-th spe
ies, 	

Æ

� 	(x) � 	(1) is the potential at x relative to the

bulk potential, e is 
harge of an ele
tron, k is Boltzmann's 
onstant, and T

is the absolute temperature. Thus, the 
harge density at a distan
e x from

the interfa
e is

�

e

(x) =

X

i

n

i

z

i

e =

X

i

n

0

i

z

i

e exp

�

�z

i

e	

Æ

kT

�

(41)

Substituting this expression for the 
harge density into Poisson's equation,

we obtain the di�erential equation

�

2

	

Æ

�x

2

= �

4��

e

(x)

�

= �

4�

�

X

i

en

0

i

z

i

exp

�

�z

i

e	

Æ

kT

�

(42)

3

Be
ause the boundary layer in the 
ow problem is very thin, it is not unreasonable

to assume that the 
harged interfa
e rea
hes thermal equilibrium on a time s
ale that is

very short 
ompared to the time s
ale of 
uid motion.
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where � is the diele
tri
 
onstant of the solution. While this equation 
an be

solved exa
tly [5, 3℄, it is simpler and more illuminating to use the Debye-

H�u
kel approximation under 
onditions where the ele
tri
al energy is small


ompared to the thermal energy. Expanding the exponential and keeping

only the �rst two terms, we obtain

�

2

	

Æ

�x

2

== �

4�

�

 

X

i

en

0

i

z

i

�

X

i

e

2

n

0

i

z

2

i

	

Æ

kT

!

: (43)

Sin
e, the �rst sum must be zero in ele
tri
ally neutral solutions, we are left

with the linear equation

�

2

	

Æ

�x

2

=

4�

�

 

X

i

e

2

n

0

i

z

2

i

kT

!

	

Æ

= �

2

	

Æ

(44)

where

� =

 

4�e

2

P

n

0

i

z

2

i

�kT

!

1=2

: (45)

With the boundary 
onditions,

1. 	

Æ

= � �	(1) = �	

�

at x = 0,

2. 	

Æ

! 0 as x!1, and

3.

�	

Æ

�x

! 0 as x!1,

equation (44) 
an be integrated to give

	

Æ

= �	

�

exp(�x=�

�1

) (46)

where �

�1

is the Debye s
reening length.

The surfa
e 
harge density observed at ma
ros
opi
 s
ales 
an be ob-

tained by integrating the di�use 
harge density, �

e

, from the interfa
e surfa
e

to in�nity to give

� =

Z

1

0

�

e

dx = �

�

4�

Z

1

0

�

2

	

Æ

�x

2

dx

= �

�

4�

�	

Æ

�x

�

�

�

�

x=1

x=0

=

��

4�

	

�

(47)

This equations allows us to 
ompute the potential di�eren
e between the

surfa
e and the bulk solution, 	

�

, from the surfa
e 
harge density found

by solving the ele
trodynami
s problem. With this relationship in pla
e, we

now have all the pie
es ne
essary to de�ne the slip boundary 
onditions for


ow past a 
olloid parti
le.

12



Figure 5: Spheri
al 
olloid parti
le with diele
tri
 
onstant �

s

in an ele
-

trolyte solution with diele
tri
 
onstant � in an uniform applied ele
tri


�eld.

5 Flow around a stationary un
harged sphere in a

uniform ele
tri
 �eld

Having solved the slip velo
ity, ele
trodynami
s, and 
harged interfa
e prob-

lems, we are now in a position to solve the Stokes 
ow problem

�r

2

u = rp ; r � u = 0: (48)

for the situation of an un
harged sphere in a uniform applied ele
tri
 �eld

(Figure 5).

Combining equations (14), (38), (39), and (47), the slip velo
ity on the

surfa
e of the sphere is

v

s

= �

9�

s

�

�1

16�

(E

0

� n)(E

0

� t) (49)

where n and t are the unit normal and unit tangent to the surfa
e of the

sphere, �

�1

is the Debye s
reening length, and �

s

is the diele
tri
 
onstant

for the material 
omposing the sphere

4

. De�ning � =

9�

s

�

�1

16�

, the boundary


onditions for this problem are spe
i�ed by

1. u � n = 0 and

2. u � t = v

s

= ��(E

0

� n)(E

0

� t)

4

In the 
ase of a 
ondu
ting sphere, re
all that for real 
ondu
ting spheres, there is

still an e�e
tive diele
tri
 
onstant due to its �nite polarizability.
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at r = a.

To solve the problem, we 
an apply ve
tor harmoni
 methods. Sin
e the

boundary 
onditions are quadrati
 in the applied ele
tri
 �eld, we seek a

potential fun
tions that are linear in the ve
tor harmoni
s but quadrati
 in

the ele
tri
 �eld. This method should work be
ause 
hanging the fun
tional

dependen
e of the solution on the physi
al parameters has no e�e
t on the

harmoni
ity of the solution. Unfortunately, the number of 
ombinations to


onsider is in
reased as a result of the quadrati
 nature of the boundary


onditions. While this in
reases the amount of algebra, the fundamental

approa
h is un
hanged. Note that be
ause we do not know what the 
ow

will be as r !1, the potential fun
tions need to in
lude both exterior and

interior harmoni
s.

For this problem, the potential fun
tions are

� = �

"

E

0

� E

0

r

3

� 3

(E

0

� x)

2

r

5

#

+ �

h

r

2

(E

0

�E

0

)� 3(E

0

� x)

2

i

+


�

E

0

� E

0

r

�

+ Æ [E

0

�E

0

℄ (50)

 = 0 (51)

A = �

"

15

(E

0

� x)

2

r

7

x� 3

(E

0

� x)

r

5

E

0

#

+ !

h

3r

2

(E

0

� x)E

0

� 15(E

0

� x)

2

x

i

+�

�

E

0

� x

r

3

E

0

�

+ � [(E

0

� E

0

)x℄ + � [(E

0

� x)E

0

℄ + %

�

E

0

�E

0

r

3

x

�

:(52)

Be
ause [E

0

� E

0

℄ has zero gradient and

h

E

0

�E

0

r

3

x

i

is divergen
e free, they

do not 
ontribute to u or p. Thus, we 
an immediately set Æ and % to zero.

Using the \Hin
h method," the velo
ity �eld is found to be

u =

x

h�

�

3�

r

5

+ 2� �




r

3

�

(E

0

�E

0

) +

�

15�

r

7

�

90�

r

7

�

3�

r

5

+ 6!

�

(E

0

� x)

2

i

+E

0

h�

�

6�

r

5

� 6� +

30�

r

5

� 30!r

2

�

(E

0

� x)

i

: (53)

Noti
e that the � [(E

0

�E

0

)x℄ and � [(E

0

� x)E

0

℄ terms do not 
ontribute

to the velo
ity �eld, so we 
an set � = 0 = �. Applying the boundary


onditions to equation (53), we �nd that

0 =

�

�

3�

a

4

+ 2�a�




a

2

�

(E

0

� E

0

)

+

�

9�

a

4

� 6�a�

60�

a

4

�

3�

a

2

� 24!a

3

�

(E

0

� n)

2

(54)
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��(E

0

� n)(E

0

� t) =

�

�

6�

a

4

� 6�a+

30�

a

4

� 30!a

3

�

(E

0

� n)(E

0

� t): (55)

Equating the 
oeÆ
ients of (E

0

�E

0

), (E

0

� n), and (E

0

� t) gives the three

equations

�

3�

a

4

+ 2�a�




a

2

= 0 (56)

3�

a

4

� 2�a�

20�

a

4

�

�

a

2

� 8!a

3

= 0 (57)

�

6�

a

4

� 6�a+

30�

a

4

� 30!a

3

= ��: (58)

We need three more equations to determine unique solution. These 
an be

found by using r � u = 0.

By the diveren
e theorem, we know that

Z

S

u � ndS = 0 (59)

over any surfa
e, S, 
ontaining the entire sphere r = a. Note that we 
an

ignore the 
ontibution of the surfa
e of the sphere r = a to the a \total"

surfa
e integral be
ause u � n = 0 on the sphere. Taking S to be a sphere

of radius r > a,

0 =

R

S

�

�

3�

r

4

+ 2�r �




r

2

�

(E

0

� E

0

)dS

+

R

S

�

9�

r

4

� 6�r �

60�

r

4

�

3�

r

2

� 24!r

3

�

(E

0

� n)

2

dS: (60)

Re
ognizing that

R

S

dS = 4�r

2

and

R

S

(
^
z �n)dS = 4�r

2

and rearranging, we

see that

0 = 4�r

2

(E

0

� E

0

)

�

�


 + �

r

2

�

20�

r

4

� 8!r

3

�

: (61)

Sin
e this must hold for any r, we require that 
 = �� and � = 0 = !.

Using these results, the system of equations (56) - (58) simpli�es to

3�

a

4

� 2�a�

�

a

2

= 0 (62)

6�

a

4

+ 6�a = �: (63)
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Unfortunately, there is still one degree of freedom. To eliminate this degree

of freedom, we make the assumption that the pressure �eld around the

sphere is 
onstant be
ause 
olloidal parti
les are so small

5

. Thus, � = 0 so

that

� =

�a

4

15

(64)

� =

�

10a

: (65)

Plugging the values for all the 
onstants into equation (53), we �nd that

6

u = �n

"

1

5

 

1�

�

a

r

�

4

!

(E

0

�E

0

) +

�

a

r

�

4

(E

0

� n)

2

#

�

1

5

�E

0

 

3 + 2

�

a

r

�

4

!

(E

0

� n): (66)

Noti
e that the 
ow �eld is proportional to �. Thus, a greater 
ow rate is

a
hieved by in
reasing the polarizability of the sphere or the thi
kness of the

boundary layer. It is also interesting to observe that this velo
ity �eld has

the \qualitative" features of Bazant's theory. Along the axis of the ele
tri


�eld, 
uid is su
ked in be
ause the 
uid velo
ity in the axial dire
tion is

u = �

2�jE

0

j

2

5

"

1 +

�

a

r

�

4

#

n: (67)

In dire
tions perpendi
ular to the ele
tri
 �eld, 
uid 
ows away from the

sphere be
ause for n perpendi
ular to E

0

u =

�jE

0

j

2

5

"

1�

�

a

r

�

4

#

n (68)

and 1� (a=r)

4

> 0 when r > a.

6 Con
lusion

In this paper, we have dis
ussed the major theoreti
al 
omponents required

to 
ompute the 
ow �eld around a spheri
al, 
olloidal parti
le in an ele
-

trolyte solution. To take advantage of the spheri
al symmetry in the prob-

lem, ve
tor harmoni
 methods were used whereever possible. It was shown

5

This is a MAJOR handwave and probably bogus, but I 
ouldn't think of anything

else before the proje
t deadline.

6

It would have been ni
e to plot the velo
ity �eld, but I didn't have the time.
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that ve
tor harmoni
 methods give reasonable results even for problems

where the boundary 
onditions are not linear in the physi
al parameters of

the problem. Further investigation of the solution found in se
tion 5 is ne
-

essary to verify this hypothsis. In parti
ular, a more rigorous way 
lose the

system of equations (62) and (63) needs to be found and the resulting 
ow

�elds should be 
ompared with results derived using other analyti
 methods.
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