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1 Introdution

In the past, the study of olloid ows indued by eletri �elds has foused

on the relationship between the veloity of harged partiles and the ele-

tri fores ating on them. Reent work has shown that interesting (and

potentially useful) ows our even in the ase of unharged partiles [2℄.

Perhaps the most surprising result is that at steady state, a nonuniform zeta

potential is indued on the surfae of onduting olloidal partiles whih

ats to produe a ow that \suks in uid along the �eld axis and ejets it

radially" but generates no net fore on the partile [2℄.

The purpose of this paper is to explore the physial foundations of suh

ows and attempt to approximate the results found in Professor Bazant's

work for spherial olloidal partiles. We begin by examining the origins

of interfaial slip veloity in eletroosmosis whih leads us to onsider solu-

tions of the eletrodynamis problem and the Gouy-Chapman model for the

harged interfae. Finally, we pull all the piees together to solve the ow

problem around a stationary unharged sphere in a uniform eletri �eld.

Throughout the analysis, vetor harmoni methods will be used whenever

possible.

2 Interfaial slip veloity in eletroosmosis

2.1 Physial piture

The presene of a harged interfae in an eletrolyte solution disrupts the

balane between positive and negative ions resulting in the formation of

di�use harge layers at the interfae. The thikness of the di�use harge

layer is on the order of the Debye sreening length, �

�1

, and the harge

1



Figure 1: Di�use layer of negative ounterions (in solution) at a positively

harged interfae.

density within the di�use layer, �

e

, deays roughly exponentially in distane

from the harged interfae [1℄. The presene of harge within the di�use layer

hanges its uid dynamis relative to the bulk and gives rise to a boundary

layer at the harged interfae (Figure 1).

Sine the surfae harge and di�use harge layer do not form a rigid

system, they move independently under the inuene of external eletri

�elds; they move in opposite diretions beause they have opposite signs.

Furthermore, beause ions drag uid with them as they move, the net e�et

is an apparent slip veloity at the interfae at marosopi sales [1℄.

2.2 Derivation of the slip veloity

Within the boundary layer, the interfae is almost at and the eletri �eld is

approximately onstant and parallel to the interfae

1

, so the uid is reason-

ably modelled by unidiretional ow over an in�nite plane of harge under

the inuene of an onstant tangential eletri �eld.

For this type of ow, the Navier-Stokes equations are

v
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1

At steady state, no urrent an ow into the surfae, so, for Ohmi materials, the

normal omponent of the eletri �eld must be zero.
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where �

e

(z) and E

x

(z) are the harge density and eletri �eld in the x-

diretion at a distane z from the interfae. De�ning the nondimensional

variables
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(3)

where R is the length sale of the olloid partile, V is the marosopi speed

of the partile, and Æ is the width of the boundary layer, the nondimension-

alized form of equation (2) beomes
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For small partiles in aqueous solutions, the Re �

V R

�

� 1, so the har-

ateristi pressure is given by P

0

=

�V

R

. With this hoie of P

0

and some

rearrangement, equation (4) beomes
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Sine Re � 1 and Æ=R � 1, the inertial and pressure terms are negligible

leaving only the visous fore to balane eletri fores. Thus, the governing

equation in dimensional form is

�

�

2

v

x

�z

2

+ �

e

(z)E

x

(z) = 0: (6)

To solve this equation, reall that for steady state systems, the eletri

�eld and harge density an be related to a potential funtion, 	, by

E = �r	 (7)

�

e

= �

�

4�

r

2

	: (8)

For this system, the potential an be written as

	 = �E

1

x+	

s

; (9)

where E

1

is the tangential eletri �eld felt at the outer edge of the bound-

ary layer and 	

s

is the potential due to the surfae and di�use harge. Note

that by symmetry,

�	

s

�x

= 0 =

�	

s

�y

. Thus,
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1

(10)

�

e

= �

�

4�

�

2

	

s

�z

2

(11)

3



Substituting these results into equation (6), the governing equation beomes

�

�

2

v

x

�z

2

�

�

4�

E

1

�

2

	

s

�z

2

= 0: (12)

This equation an be integrated exatly subjet to the following bound-

ary onditions:

1. v

x

= 0 at y = 0 (no-slip ondition),

2. 	

s

(0) = � at y = 0 (de�nition of the zeta potential),

3.

�v

x

�z

= 0 as z !1 (mathing between inner and outer veloity �elds),

and

4.

�	

s

�z

= 0 as z !1 (E

?

= 0 at outer edge of boundary layer).

to give

v

x

=

�

4��
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s

(y)� �℄E

1

: (13)

The slip veloity observed outside on marosopi sales is the value of v

x

at the outer edge of the boundary layer.

v

s

= lim

z!1

v

x

=

�	

�

4��

E

1

; (14)

where 	

�

is de�ned to be the potential di�erene between the bulk solution

and surfae of the harged interfae.

Several important observations should be made about the slip veloity.

First, it is parallel to the interfaial surfae. Seond, it is proportional to the

tangential eletri �eld outside the boundary layer and to the di�erene in

eletri potential between the bulk solution and the interfae. Thus, if the

eletrodynamis problem an be solved independently of the ow, equation

(14) spei�es the boundary onditions for the uid ow problem. The two

main issues involved in solving the eletrodynamis problem,

� determining the eletri �eld at the outer edge of the boundary layer

and

� alulating the potential di�erene between the bulk and the interfae

are disussed next.
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3 The eletrodynamis problem

Steady state eletrodynami problems have the onvenient property that

the eletri �eld an always be related to a salar potential funtion that

is harmoni in regions with zero harge density. For problems with spher-

ial or ylindrial symmetry and linear boundary onditions, this property

makes it possible to easily ompute the eletri �eld using vetor harmoni

methods. In this setion, vetor harmoni methods are applied to solve ele-

trodynamis problems that are relevant to olloidal uid ows resulting from

uniform, applied eletri �elds. In all ases, it is assumed that the applied

eletri �eld is E

0

, insulators are linear dieletris (D = �E, � the dieletri

onstant), and ondutors obey Ohm's law (J = �E, � the ondutivity).

For olloid ow problems, the relevant information to extrat from the

eletrodynamis problem are the eletri �eld at the external surfae and the

free surfae harge. The eletri �eld at the external surfae is important

beause it determines the eletri �eld at the outer edge of the uid boundary

layer; the free surfae harge is important beause, as will be shown in

setion 4, it an be diretly related to the potential di�erene between the

bulk solution and the harged interfae.

3.1 Jump onditions at material interfaes

Beause olloidal ow problems often involve materials with di�ering ele-

trial properties, it is important to understand the jump onditions on the

eletri �eld at material interfaes.

For linear materials, the Maxwell equations for the eletri �eld at steady

state are

r �D = �r �E = 4��

e

(15)

r�E = 0; (16)

where E and D are the eletri �eld and displaement. The integral forms

of these equations lead to the jump onditions

(D�

^

D) � n = �(E�

^

E) � n = 4�� (17)

(E�

^

E) � t = 0; (18)

aross material interfaes, where n is the unit normal and t is any unit

tangent to the surfae de�ned by the material interfae and � is the surfae

density of free harge. For moving interfaes, the seond equation beomes

(E�

^

E) � t = �(n � �)[n� (B�

^

B)℄ � t (19)
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where v = � is the veloity of the interfae and B is the magneti �eld

[7℄. Fortunately, for Stokes ow problems, v is very small ompared to the

speed of light, so the tangential jump ondition for the eletri �eld is well

approximated by equation (18).

An important feature of steady state problems is that the urrent density

must be divergene free, r � J = 0. In integral form, this ondition on the

urrent density implies that there an be no jump in the normal omponent

of the urrent density aross any surfae. That is if a surfae, S, has normal

vetor, n,

(J�

^

J) � n = 0: (20)

For onduting materials that obey Ohm's law, this jump ondition for the

urrent density translates diretly into a jump ondition on the eletri �eld:

(�E� �̂

^

E) � n = 0: (21)

where n is de�ned as for equations (17) and (18).

At �rst glane, equations (17) and (21) seem to be independent normal

jump onditions for the eletri �eld. Fortunately, they are onsistent due

to the presene of free surfae harge. Sine equation (21) is self ontained,

it is easier to use in solving the eletrodynamis problem. The eletri

displaement jump ondition an then be used to �nd the amount of free

surfae harge present at material interfaes.

3.2 Conduting material ontaining a spherial ondutivity

anomaly

Suppose that a sphere of radius a with ondutivity �̂ is embedded within

a onduting material with ondutivity � (Figure 2).

To determine the eletri �eld, we proeed by seeking a potential fun-

tion, 	, that is a linear ombination of E

0

and the vetor harmonis. The

appropriate boundary onditions for this problem are

1. E! E

0

as r !1,

2. (E�

^

E) � t = 0 at r = a, and

3. (J�

^

J) � n = (�E� �̂

^

E) � n = 0 at r = a.

In the region outside the ondutivity anomaly, we use the exterior vetor

harmonis to obtain

	 = �E

0

� x+ �

E

0

� x

r

3

: (22)
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Figure 2: Spherial ondutivity anomaly with ondutivity �̂ embedded

within a onduting material with ondutivity �.

Similarly, we obtain

^

	 = �̂E

0

� x (23)

for the potential within the ondutivity anomaly. Thus, the orresponding

eletri �elds are

E = E

0

� �

E

0

r

3

+ 3�

(E

0

� x)x

r

5

(24)

^

E = ��̂E

0

: (25)

Applying the boundary onditions, we �nd that

1. is automatially satis�ed by the hoie of 	,

2. 1�

�

a

3

= ��̂, and

3. �

�

1 + 2

�

a

3

�

= ��̂�̂.

Solving this system of equations for � and �̂ gives � = a

3

�

��1

�+2

�

and �̂ =

�

�3

�+2

�

where  = �̂=�. So, the interior and exterior potentials are

	 = �

 

1�

�

a

r

�

3

�

 � 1

 + 2

�

!

E

0

� x (26)

^

	 =

�

�3

 + 2

�

E

0

� x: (27)
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The orresponding eletri �elds are

E =

 

1�

�

a

r

�

3

�

 � 1

 + 2

�

!

E

0

+ 3

�

a

r

�

3

�

 � 1

 + 2

�

(E

0

� n)n (28)

^

E =

�

3

 + 2

�

E

0

: (29)

As a side note, it is interesting to observe that these potentials and �elds are

the same as those for a spherial dieletri material with dieletri onstant

 in a vauum under the inuene of a uniform applied eletri �eld E

0

.

The important information to extrat from these potentials are the ele-

tri �eld immediately outside of the sphere and the surfae harge on the

sphere. For this problem, these are

E =

�

3

 + 2

�

E

0

+ 3

�

 � 1

 + 2

�

(E

0

� n)n (30)

� =

1

4�

�

E�

^

E

�

� n =

3

4�

�

 � 1

 + 2

�

(E

0

� n) (31)

beause � = 1 for ondutors

2

.

3.3 Insulating sphere embedded in a ondutor

Suppose that an insulating sphere of radius a with dieletri onstant � is

embedded within a onduting material with ondutivity � (Figure 3).

As in the previous ase, we seek a potential funtion, 	, that is a lin-

ear ombination of E

0

and the vetor harmonis. For this problem, the

appropriate boundary onditions are

1. E! E

0

as r !1,

2. (E�

^

E) � t = 0 at r = a, and

3. J � n = �E � n = 0 at r = a.

The last boundary ondition arises beause no urrent an ow through the

insulating sphere. Beause the only di�erene between this and the previous

problem are the boundary onditions, the same potential funtions an be

used:

	 = �E

0

� x+ �

E

0

� x

r

3

(32)

^

	 = �̂E

0

� x: (33)

2

Atually, for \physial" ondutors that are �nite in extent, � may e�etively di�er

from 1 due to the �nite aumulation of harge at the ondutor boundaries.
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Figure 3: Insulating sphere with dieletri onstant �̂ embedded within a

onduting material with ondutivity �.

Applying the boundary onditions, we �nd that

1. is automatially satis�ed by the hoie of 	,

2. 1�

�

a

3

= ��̂, and

3. �

�

1 + 2

�

a

3

�

= 0.

Solving for � and �̂, we obtain � = �

a

3

2

and �̂ = �

3

2

. With these values of

� and �̂, the potential funtions are

	 = �

 

1 +

1

2

�

a

r

�

3

!

(E

0

� x) (34)

^

	 = �

3

2

E

0

� x: (35)

Thus, the eletri �eld is given by

E =

 

1 +

1

2

�

a

r

�

3

!

E

0

�

3

2

�

a

r

�

3

(E

0

� n)n (36)

^

E =

3

2

E

0

: (37)

For this problem, the eletri �eld immediately outside of the sphere is

E =

3

2

E

0

�

3

2

(E

0

� n)n (38)
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and the surfae harge is

� =

1

4�

�

E� �

^

E

�

� n = �

3�

8�

(E

0

� n): (39)

As would be expeted, the solution for this problem agrees with the results

of the previous setion in the limit that  = �̂=�! 0.

A few observations should be made about equations (38) and (39). First,

the exterior eletri �eld at the sphere's surfae is purely tangential beause

the surfae harge that aumulates during pre-steady state urrent ow

ats to keep external eletri �eld lines from entering the sphere. Seond, a

greater polarizability of the material in the sphere results in a larger surfae

harge build up. This e�et arises beause a highly polarizable material will

respond to the eletri �eld by plaing a large amount of bound harge at

the poles of the sphere. To balane the bound harge, a orrespondingly

high amount free surfae harge is required at the poles.

Finally, it is important note that the results of this problem are appli-

able regardless what the harge arriers are in the ondutor. That the

arriers annot ow between the ondutor and the material in the sphere

is the signi�ant feature of the system. Therefore, analysis of this type of

problem is diretly appliable to the situation of a metal sphere plaed in an

non-reating eletrolyte solution beause the metal sphere is impenetrable

to ions in solution. In this ase, the �nite bounds of the metal sphere and

the fat that the solution is an eletron insulator gives the metal an e�etive

dieletri onstant greater than 1 due to harge build up at the surfae. For

olloidal uid ows, it is this interpretation of an insulator embedded within

a ondutor that is relevant.

4 The harged interfae model

Having solved the eletrodynamis problem, it remains to alulate the po-

tential di�erene, 	

�

, between the bulk solution and the harged interfae.

It turns out that 	

�

an be related to the surfae density of free harge

using a model for the harged interfae.

There are many models of the harge distribution that arises at harged

interfaes. For historial reasons, these are known as double layer models

[3℄. The simplest model that gives a relation between the free surfae harge

is the Gouy-Chapman model that was developed in the early 1900's. In this

model, the ions in solution form a di�use layer at the interfae (Figure 4).

In the Gouy-Chapman model, the harged interfae is assumed to be in
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Figure 4: Di�use layer of negative ounterions (in solution) at a positively

harged interfae. (The only di�erene between this �gure and Figure 1 is

the oordinate system.)

thermal equilibrium

3

. So, the onentration of ions obeys Boltzmann's law

n

i

(x) = n

0

i

exp

�

�z

i

e	

Æ

kT

�

(40)

where n

i

(z) is the onentration of the i-th speies at a distane z from the

interfae, n

0

i

is the bulk onentration of the i-th speies, z

i

is the valeny

of the i-th speies, 	

Æ

� 	(x) � 	(1) is the potential at x relative to the

bulk potential, e is harge of an eletron, k is Boltzmann's onstant, and T

is the absolute temperature. Thus, the harge density at a distane x from

the interfae is

�

e

(x) =

X

i

n

i

z

i

e =

X

i

n

0

i

z

i

e exp

�

�z

i

e	

Æ

kT

�

(41)

Substituting this expression for the harge density into Poisson's equation,

we obtain the di�erential equation

�

2

	

Æ

�x

2

= �

4��

e

(x)

�

= �

4�

�

X

i

en

0

i

z

i

exp

�

�z

i

e	

Æ

kT

�

(42)

3

Beause the boundary layer in the ow problem is very thin, it is not unreasonable

to assume that the harged interfae reahes thermal equilibrium on a time sale that is

very short ompared to the time sale of uid motion.
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where � is the dieletri onstant of the solution. While this equation an be

solved exatly [5, 3℄, it is simpler and more illuminating to use the Debye-

H�ukel approximation under onditions where the eletrial energy is small

ompared to the thermal energy. Expanding the exponential and keeping

only the �rst two terms, we obtain

�

2

	

Æ

�x

2

== �

4�

�

 

X

i

en

0

i

z

i

�

X

i

e

2

n

0

i

z

2

i

	

Æ

kT

!

: (43)

Sine, the �rst sum must be zero in eletrially neutral solutions, we are left

with the linear equation

�

2

	

Æ

�x

2

=

4�

�

 

X

i

e

2

n

0

i

z

2

i

kT

!

	

Æ

= �

2

	

Æ

(44)

where

� =

 

4�e

2

P

n

0

i

z

2

i

�kT

!

1=2

: (45)

With the boundary onditions,

1. 	

Æ

= � �	(1) = �	

�

at x = 0,

2. 	

Æ

! 0 as x!1, and

3.

�	

Æ

�x

! 0 as x!1,

equation (44) an be integrated to give

	

Æ

= �	

�

exp(�x=�

�1

) (46)

where �

�1

is the Debye sreening length.

The surfae harge density observed at marosopi sales an be ob-

tained by integrating the di�use harge density, �

e

, from the interfae surfae

to in�nity to give

� =

Z

1

0

�

e

dx = �

�

4�

Z

1

0

�

2

	

Æ

�x

2

dx

= �

�

4�

�	

Æ

�x

�

�

�

�

x=1

x=0

=

��

4�

	

�

(47)

This equations allows us to ompute the potential di�erene between the

surfae and the bulk solution, 	

�

, from the surfae harge density found

by solving the eletrodynamis problem. With this relationship in plae, we

now have all the piees neessary to de�ne the slip boundary onditions for

ow past a olloid partile.
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Figure 5: Spherial olloid partile with dieletri onstant �

s

in an ele-

trolyte solution with dieletri onstant � in an uniform applied eletri

�eld.

5 Flow around a stationary unharged sphere in a

uniform eletri �eld

Having solved the slip veloity, eletrodynamis, and harged interfae prob-

lems, we are now in a position to solve the Stokes ow problem

�r

2

u = rp ; r � u = 0: (48)

for the situation of an unharged sphere in a uniform applied eletri �eld

(Figure 5).

Combining equations (14), (38), (39), and (47), the slip veloity on the

surfae of the sphere is

v

s

= �

9�

s

�

�1

16�

(E

0

� n)(E

0

� t) (49)

where n and t are the unit normal and unit tangent to the surfae of the

sphere, �

�1

is the Debye sreening length, and �

s

is the dieletri onstant

for the material omposing the sphere

4

. De�ning � =

9�

s

�

�1

16�

, the boundary

onditions for this problem are spei�ed by

1. u � n = 0 and

2. u � t = v

s

= ��(E

0

� n)(E

0

� t)

4

In the ase of a onduting sphere, reall that for real onduting spheres, there is

still an e�etive dieletri onstant due to its �nite polarizability.
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at r = a.

To solve the problem, we an apply vetor harmoni methods. Sine the

boundary onditions are quadrati in the applied eletri �eld, we seek a

potential funtions that are linear in the vetor harmonis but quadrati in

the eletri �eld. This method should work beause hanging the funtional

dependene of the solution on the physial parameters has no e�et on the

harmoniity of the solution. Unfortunately, the number of ombinations to

onsider is inreased as a result of the quadrati nature of the boundary

onditions. While this inreases the amount of algebra, the fundamental

approah is unhanged. Note that beause we do not know what the ow

will be as r !1, the potential funtions need to inlude both exterior and

interior harmonis.

For this problem, the potential funtions are

� = �

"

E

0

� E

0

r

3

� 3

(E

0

� x)

2

r

5

#

+ �

h

r

2

(E

0

�E

0

)� 3(E

0

� x)

2

i

+

�

E

0

� E

0

r

�

+ Æ [E

0

�E

0

℄ (50)

 = 0 (51)

A = �

"

15

(E

0

� x)

2

r

7

x� 3

(E

0

� x)

r

5

E

0

#

+ !

h

3r

2

(E

0

� x)E

0

� 15(E

0

� x)

2

x

i

+�

�

E

0

� x

r

3

E

0

�

+ � [(E

0

� E

0

)x℄ + � [(E

0

� x)E

0

℄ + %

�

E

0

�E

0

r

3

x

�

:(52)

Beause [E

0

� E

0

℄ has zero gradient and

h

E

0

�E

0

r

3

x

i

is divergene free, they

do not ontribute to u or p. Thus, we an immediately set Æ and % to zero.

Using the \Hinh method," the veloity �eld is found to be

u =

x

h�

�

3�

r

5

+ 2� �



r

3

�

(E

0

�E

0

) +

�

15�

r

7

�

90�

r

7

�

3�

r

5

+ 6!

�

(E

0

� x)

2

i

+E

0

h�

�

6�

r

5

� 6� +

30�

r

5

� 30!r

2

�

(E

0

� x)

i

: (53)

Notie that the � [(E

0

�E

0

)x℄ and � [(E

0

� x)E

0

℄ terms do not ontribute

to the veloity �eld, so we an set � = 0 = �. Applying the boundary

onditions to equation (53), we �nd that

0 =

�

�

3�

a

4

+ 2�a�



a

2

�

(E

0

� E

0

)

+

�

9�

a

4

� 6�a�

60�

a

4

�

3�

a

2

� 24!a

3

�

(E

0

� n)

2

(54)
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��(E

0

� n)(E

0

� t) =

�

�

6�

a

4

� 6�a+

30�

a

4

� 30!a

3

�

(E

0

� n)(E

0

� t): (55)

Equating the oeÆients of (E

0

�E

0

), (E

0

� n), and (E

0

� t) gives the three

equations

�

3�

a

4

+ 2�a�



a

2

= 0 (56)

3�

a

4

� 2�a�

20�

a

4

�

�

a

2

� 8!a

3

= 0 (57)

�

6�

a

4

� 6�a+

30�

a

4

� 30!a

3

= ��: (58)

We need three more equations to determine unique solution. These an be

found by using r � u = 0.

By the diverene theorem, we know that

Z

S

u � ndS = 0 (59)

over any surfae, S, ontaining the entire sphere r = a. Note that we an

ignore the ontibution of the surfae of the sphere r = a to the a \total"

surfae integral beause u � n = 0 on the sphere. Taking S to be a sphere

of radius r > a,

0 =

R

S

�

�

3�

r

4

+ 2�r �



r

2

�

(E

0

� E

0

)dS

+

R

S

�

9�

r

4

� 6�r �

60�

r

4

�

3�

r

2

� 24!r

3

�

(E

0

� n)

2

dS: (60)

Reognizing that

R

S

dS = 4�r

2

and

R

S

(
^
z �n)dS = 4�r

2

and rearranging, we

see that

0 = 4�r

2

(E

0

� E

0

)

�

�

 + �

r

2

�

20�

r

4

� 8!r

3

�

: (61)

Sine this must hold for any r, we require that  = �� and � = 0 = !.

Using these results, the system of equations (56) - (58) simpli�es to

3�

a

4

� 2�a�

�

a

2

= 0 (62)

6�

a

4

+ 6�a = �: (63)
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Unfortunately, there is still one degree of freedom. To eliminate this degree

of freedom, we make the assumption that the pressure �eld around the

sphere is onstant beause olloidal partiles are so small

5

. Thus, � = 0 so

that

� =

�a

4

15

(64)

� =

�

10a

: (65)

Plugging the values for all the onstants into equation (53), we �nd that

6

u = �n

"

1

5

 

1�

�

a

r

�

4

!

(E

0

�E

0

) +

�

a

r

�

4

(E

0

� n)

2

#

�

1

5

�E

0

 

3 + 2

�

a

r

�

4

!

(E

0

� n): (66)

Notie that the ow �eld is proportional to �. Thus, a greater ow rate is

ahieved by inreasing the polarizability of the sphere or the thikness of the

boundary layer. It is also interesting to observe that this veloity �eld has

the \qualitative" features of Bazant's theory. Along the axis of the eletri

�eld, uid is suked in beause the uid veloity in the axial diretion is

u = �

2�jE

0

j

2

5

"

1 +

�

a

r

�

4

#

n: (67)

In diretions perpendiular to the eletri �eld, uid ows away from the

sphere beause for n perpendiular to E

0

u =

�jE

0

j

2

5

"

1�

�

a

r

�

4

#

n (68)

and 1� (a=r)

4

> 0 when r > a.

6 Conlusion

In this paper, we have disussed the major theoretial omponents required

to ompute the ow �eld around a spherial, olloidal partile in an ele-

trolyte solution. To take advantage of the spherial symmetry in the prob-

lem, vetor harmoni methods were used whereever possible. It was shown

5

This is a MAJOR handwave and probably bogus, but I ouldn't think of anything

else before the projet deadline.

6

It would have been nie to plot the veloity �eld, but I didn't have the time.
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that vetor harmoni methods give reasonable results even for problems

where the boundary onditions are not linear in the physial parameters of

the problem. Further investigation of the solution found in setion 5 is ne-

essary to verify this hypothsis. In partiular, a more rigorous way lose the

system of equations (62) and (63) needs to be found and the resulting ow

�elds should be ompared with results derived using other analyti methods.
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