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1 Introduction

In the past, the study of colloid flows induced by electric fields has focused
on the relationship between the velocity of charged particles and the elec-
tric forces acting on them. Recent work has shown that interesting (and
potentially useful) flows occur even in the case of uncharged particles [2].
Perhaps the most surprising result is that at steady state, a nonuniform zeta
potential is induced on the surface of conducting colloidal particles which
acts to produce a flow that “sucks in fluid along the field axis and ejects it
radially” but generates no net force on the particle [2].

The purpose of this paper is to explore the physical foundations of such
flows and attempt to approximate the results found in Professor Bazant’s
work for spherical colloidal particles. We begin by examining the origins
of interfacial slip velocity in electroosmosis which leads us to consider solu-
tions of the electrodynamics problem and the Gouy-Chapman model for the
charged interface. Finally, we pull all the pieces together to solve the flow
problem around a stationary uncharged sphere in a uniform electric field.
Throughout the analysis, vector harmonic methods will be used whenever
possible.

2 Interfacial slip velocity in electroosmosis

2.1 Physical picture

The presence of a charged interface in an electrolyte solution disrupts the
balance between positive and negative ions resulting in the formation of
diffuse charge layers at the interface. The thickness of the diffuse charge
layer is on the order of the Debye screening length, x~', and the charge



© o

o S
O]

@@LQQ @2@9
D D D DD

Figure 1: Diffuse layer of negative counterions (in solution) at a positively
charged interface.

density within the diffuse layer, p., decays roughly exponentially in distance
from the charged interface [1]. The presence of charge within the diffuse layer
changes its fluid dynamics relative to the bulk and gives rise to a boundary
layer at the charged interface (Figure 1).

Since the surface charge and diffuse charge layer do not form a rigid
system, they move independently under the influence of external electric
fields; they move in opposite directions because they have opposite signs.
Furthermore, because ions drag fluid with them as they move, the net effect
is an apparent slip velocity at the interface at macroscopic scales [1].

2.2 Derivation of the slip velocity
Within the boundary layer, the interface is almost flat and the electric field is
approximately constant and parallel to the interface!, so the fluid is reason-
ably modelled by unidirectional flow over an infinite plane of charge under
the influence of an constant tangential electric field.

For this type of flow, the Navier-Stokes equations are

Vg = Vg (y) (1)
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LAt steady state, no current can flow into the surface, so, for Ohmic materials, the
normal component of the electric field must be zero.




where pe(z) and E,(z) are the charge density and electric field in the -
direction at a distance z from the interface. Defining the nondimensional
variables
! Vg r_ T r_? ! t P
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where R is the length scale of the colloid particle, V' is the macroscopic speed
of the particle, and ¢ is the width of the boundary layer, the nondimension-
alized form of equation (2) becomes
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For small particles in aqueous solutions, the Re = g < 1, so the char-

acteristic pressure is given by Py = %. With this choice of Py and some

rearrangement, equation (4) becomes
6% o', 62 oP' 9%l &

Remsar = "Baw T o T ayre@E)

(5)

Since Re < 1 and §/R < 1, the inertial and pressure terms are negligible
leaving only the viscous force to balance electric forces. Thus, the governing
equation in dimensional form is

0%v,
072

To solve this equation, recall that for steady state systems, the electric
field and charge deunsity can be related to a potential function, ¥, by

K + pe(2) Eg(2) = 0. (6)

E=-VU (7)

€
Pe = —EVQ\I/. (8)

For this system, the potential can be written as
U =—Fyxr+ ¥y, (9)

where F, is the tangential electric field felt at the outer edge of the bound-
ary layer and W, is the potential due to the surface and diffuse charge. Note

that by symmetry, 851;5 =0= 8513’;. Thus,
e 0%,
=—— 11
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Substituting these results into equation (6), the governing equation becomes

2 2
Ov, _ €p 0%y (12)
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This equation can be integrated exactly subject to the following bound-
ary conditions:

1. v; =0 at y = 0 (no-slip condition),

2. ¥4(0) = ¢ at y = 0 (definition of the zeta potential),

3. %L; = 0 as z — oo (matching between inner and outer velocity fields),

and
4. % =0as z — oo (EL = 0 at outer edge of boundary layer).

to give

€
Uz = m [¥s(y) — (] oo (13)
The slip velocity observed outside on macroscopic scales is the value of vy

at the outer edge of the boundary layer.
s . ela
v’ = le)rgo Vg = FEOO’ (14)
where VA is defined to be the potential difference between the bulk solution
and surface of the charged interface.

Several important observations should be made about the slip velocity.
First, it is parallel to the interfacial surface. Second, it is proportional to the
tangential electric field outside the boundary layer and to the difference in
electric potential between the bulk solution and the interface. Thus, if the
electrodynamics problem can be solved independently of the flow, equation
(14) specifies the boundary conditions for the fluid flow problem. The two
main issues involved in solving the electrodynamics problem,

e determining the electric field at the outer edge of the boundary layer
and

e calculating the potential difference between the bulk and the interface

are discussed next.



3 The electrodynamics problem

Steady state electrodynamic problems have the convenient property that
the electric field can always be related to a scalar potential function that
is harmonic in regions with zero charge density. For problems with spher-
ical or cylindrical symmetry and linear boundary conditions, this property
makes it possible to easily compute the electric field using vector harmonic
methods. In this section, vector harmonic methods are applied to solve elec-
trodynamics problems that are relevant to colloidal fluid flows resulting from
uniform, applied electric fields. In all cases, it is assumed that the applied
electric field is Ey, insulators are linear dielectrics (D = €E, € the dielectric
constant), and conductors obey Ohm’s law (J = KE, k the conductivity).

For colloid flow problems, the relevant information to extract from the
electrodynamics problem are the electric field at the external surface and the
free surface charge. The electric field at the external surface is important
because it determines the electric field at the outer edge of the fluid boundary
layer; the free surface charge is important because, as will be shown in
section 4, it can be directly related to the potential difference between the
bulk solution and the charged interface.

3.1 Jump conditions at material interfaces

Because colloidal flow problems often involve materials with differing elec-
trical properties, it is important to understand the jump conditions on the
electric field at material interfaces.

For linear materials, the Maxwell equations for the electric field at steady
state are

VeD =¢eVeE =4mp, (15)
VxE=0, (16)

where E and D are the electric field and displacement. The integral forms
of these equations lead to the jump conditions

(D—D)en=¢E—E)en=4n0 (17)
(E—E)et =0, (18)

across material interfaces, where n is the unit normal and t is any unit
tangent to the surface defined by the material interface and o is the surface
density of free charge. For moving interfaces, the second equation becomes

(E—E)et=—(nef)[nx (B-B)et (19)



where v = ¢f is the velocity of the interface and B is the magnetic field
[7]. Fortunately, for Stokes flow problems, v is very small compared to the
speed of light, so the tangential jump condition for the electric field is well
approximated by equation (18).

An important feature of steady state problems is that the current density
must be divergence free, V ¢ J = 0. In integral form, this condition on the
current density implies that there can be no jump in the normal component
of the current density across any surface. That is if a surface, S, has normal
vector, n,

(J—J)en=0. (20)
For conducting materials that obey Ohm’s law, this jump condition for the
current density translates directly into a jump condition on the electric field:

(kE — AE) en = 0. (21)

where n is defined as for equations (17) and (18).

At first glance, equations (17) and (21) seem to be independent normal
jump conditions for the electric field. Fortunately, they are consistent due
to the presence of free surface charge. Since equation (21) is self contained,
it is easier to use in solving the electrodynamics problem. The electric
displacement jump condition can then be used to find the amount of free
surface charge present at material interfaces.

3.2 Conducting material containing a spherical conductivity
anomaly

Suppose that a sphere of radius a with conductivity & is embedded within
a conducting material with conductivity x (Figure 2).

To determine the electric field, we proceed by seeking a potential func-
tion, ¥, that is a linear combination of Ey and the vector harmonics. The
appropriate boundary conditions for this problem are

1. E— Egas r — oo,
2. (E—E)et=0atr=a, and
3. J—J)en=(kE—iE)en=0at r =a.

In the region outside the conductivity anomaly, we use the exterior vector
harmonics to obtain

Epex

U=-Ejex+a . (22)
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Figure 2: Spherical conductivity anomaly with conductivity & embedded
within a conducting material with conductivity &.

Similarly, we obtain

~

U =aEjex (23)

for the potential within the conductivity anomaly. Thus, the corresponding
electric fields are

E E
E=E;—a— + 3aﬂ (24)
T r
E = —aE. (25)
Applying the boundary conditions, we find that
1. is automatically satisfied by the choice of ¥,
2. 1- 5 =—a&,and
3.k (142%) = -
Solving this system of equations for o and & gives a = a® (Z—%) and & =

(_—3) where v = &/k. So, the interior and exterior potentials are

€+2
W=—<1—<%>3<%>>E0.x (26)

U = <7_—+32> Ej e x. (27)
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The corresponding electric fields are
a\?®[(y—1 a\? (vy—1
E=|1-(- — | E — — | (E 2
(- () G5))ms(2) () mormn o9

E= <7—i2> Eo. (29)

As a side note, it is interesting to observe that these potentials and fields are
the same as those for a spherical dielectric material with dielectric constant
v in a vacuum under the influence of a uniform applied electric field Ey.

The important information to extract from these potentials are the elec-
tric field immediately outside of the sphere and the surface charge on the
sphere. For this problem, these are

B () Bo+3(15) Boenn (30)
a=%(E—E)on:%<3—;;>(Egon) (31)

because € = 1 for conductors?.

3.3 Insulating sphere embedded in a conductor

Suppose that an insulating sphere of radius ¢ with dielectric constant € is
embedded within a conducting material with conductivity x (Figure 3).

As in the previous case, we seek a potential function, ¥, that is a lin-
ear combination of Ey and the vector harmonics. For this problem, the
appropriate boundary conditions are

1. E— Egas r — oo,
2. (E-E)et=0atr=aq,and
3. Jen=xEen=0at r=a.

The last boundary condition arises because no current can flow through the

insulating sphere. Because the only difference between this and the previous

problem are the boundary conditions, the same potential functions can be

used:

Epex
r3

¥ = aEj e x. (33)

2 Actually, for “physical” conductors that are finite in extent, e may effectively differ

from 1 due to the finite accumulation of charge at the conductor boundaries.

V=—-Ejex+«

(32)




Figure 3: Insulating sphere with dielectric constant € embedded within a
conducting material with conductivity «.

Applying the boundary conditions, we find that

1. is automatically satisfied by the choice of ¥,

2. 1- 2% =—q,and
3. r(1+25) =
Solving for o and &, we obtain a = —“2—3 and & = —%. With these values of

«a and @&, the potential functions are

Thus, the electric field is given by

E=<1+%(%>3> Eg—%(%)g(Egon)n (36)
E = ZE,. (37)

For this problem, the electric field immediately outside of the sphere is

3 3
E:§E0—§(Eoon)n (38)



and the surface charge is

azi(E—eE)on:—g—;(Eoon). (39)
As would be expected, the solution for this problem agrees with the results
of the previous section in the limit that v = &/k — 0.

A few observations should be made about equations (38) and (39). First,
the exterior electric field at the sphere’s surface is purely tangential because
the surface charge that accumulates during pre-steady state current flow
acts to keep external electric field lines from entering the sphere. Second, a
greater polarizability of the material in the sphere results in a larger surface
charge build up. This effect arises because a highly polarizable material will
respond to the electric field by placing a large amount of bound charge at
the poles of the sphere. To balance the bound charge, a correspondingly
high amount free surface charge is required at the poles.

Finally, it is important note that the results of this problem are appli-
cable regardless what the charge carriers are in the conductor. That the
carriers cannot flow between the conductor and the material in the sphere
is the significant feature of the system. Therefore, analysis of this type of
problem is directly applicable to the situation of a metal sphere placed in an
non-reacting electrolyte solution because the metal sphere is impenetrable
to ions in solution. In this case, the finite bounds of the metal sphere and
the fact that the solution is an electron insulator gives the metal an effective
dielectric constant greater than 1 due to charge build up at the surface. For
colloidal fluid flows, it is this interpretation of an insulator embedded within
a conductor that is relevant.

4 The charged interface model

Having solved the electrodynamics problem, it remains to calculate the po-
tential difference, WA, between the bulk solution and the charged interface.
It turns out that ¥a can be related to the surface density of free charge
using a model for the charged interface.

There are many models of the charge distribution that arises at charged
interfaces. For historical reasons, these are known as double layer models
[3]. The simplest model that gives a relation between the free surface charge
is the Gouy-Chapman model that was developed in the early 1900’s. In this
model, the ions in solution form a diffuse layer at the interface (Figure 4).
In the Gouy-Chapman model, the charged interface is assumed to be in

10
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Figure 4: Diffuse layer of negative counterions (in solution) at a positively
charged interface. (The only difference between this figure and Figure 1 is
the coordinate system.)

thermal equilibrium?®. So, the concentration of ions obeys Boltzmann’s law

—zie\I/(;)
kT

ni(z) = ny exp ( (40)
where n;(z) is the concentration of the i-th species at a distance z from the
interface, n? is the bulk concentration of the i-th species, z; is the valency
of the i-th species, ¥5 = ¥(z) — ¥(o0) is the potential at x relative to the
bulk potential, e is charge of an electron, k is Boltzmann’s constant, and T°
is the absolute temperature. Thus, the charge density at a distance z from
the interface is

—zieV
x) = Znizie = Zn?zie exp < /::T 6) (41)
7 7

Substituting this expression for the charge density into Poisson’s equation,
we obtain the differential equation

82\115 47rpe _ Zen 2 exp <—Z¢6‘115> (42)
= i

0z € kT

3Because the boundary layer in the flow problem is very thin, it is not unreasonable
to assume that the charged interface reaches thermal equilibrium on a time scale that is
very short compared to the time scale of fluid motion.
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where € is the dielectric constant of the solution. While this equation can be
solved exactly [5, 3], it is simpler and more illuminating to use the Debye-
Hiickel approximation under conditions where the electrical energy is small
compared to the thermal energy. Expanding the exponential and keeping
only the first two terms, we obtain

0?4 47 0 e*ndz2 Vs
N il OILUE D Vi vl B (43)
(3 13
Since, the first sum must be zero in electrically neutral solutions, we are left

with the linear equation

0?Ws _ 4r Z e*nlz? U
0z e \5* kT
.7 (44)
where
25~ ,0,2\ /2
. dmre” ) n;z; ' (45)
ekT
With the boundary conditions,
1. Us=(— V(o) =—-Va at z =0,
2. ¥s — 0as x — oo, and
3. %—‘I;i — 0 as x = oo,
equation (44) can be integrated to give
Vs = —Waexp(—z/s") (46)

where k! is the Debye screening length.

The surface charge density observed at macroscopic scales can be ob-
tained by integrating the diffuse charge density, pe, from the interface surface
to infinity to give

0 € [ 0*V;
— de = —= [ £ 29y
7 /0 Ped: A Jo  Ox? v
e 0Ys|%=°  ex
—_ L Sy A7
At 0T |p—p ir & (47)

This equations allows us to compute the potential difference between the
surface and the bulk solution, ¥, from the surface charge density found
by solving the electrodynamics problem. With this relationship in place, we
now have all the pieces necessary to define the slip boundary conditions for
flow past a colloid particle.

12



Figure 5: Spherical colloid particle with dielectric constant e€; in an elec-
trolyte solution with dielectric constant € in an uniform applied electric
field.

5 Flow around a stationary uncharged sphere in a
uniform electric field

Having solved the slip velocity, electrodynamics, and charged interface prob-
lems, we are now in a position to solve the Stokes flow problem

pVu=Vp, Veu=0. (48)

for the situation of an uncharged sphere in a uniform applied electric field
(Figure 5).

Combining equations (14), (38), (39), and (47), the slip velocity on the
surface of the sphere is

_QESH_I
167

where n and t are the unit normal and unit tangent to the surface of the

sphere, s~ ! is the Debye screening length, and €, is the dielectric constant
-1

for the material composing the sphere*. Defining \ = gei"gﬂ , the boundary

conditions for this problem are specified by

v =

(EO L] n)(EO [ J t) (49)

1. uen =0 and

2. uet=0v"=—-A\(Egen)(Ejet)

“In the case of a conducting sphere, recall that for real conducting spheres, there is
still an effective dielectric constant due to its finite polarizability.
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at r = a.

To solve the problem, we can apply vector harmonic methods. Since the
boundary conditions are quadratic in the applied electric field, we seek a
potential functions that are linear in the vector harmonics but quadratic in
the electric field. This method should work because changing the functional
dependence of the solution on the physical parameters has no effect on the
harmonicity of the solution. Unfortunately, the number of combinations to
consider is increased as a result of the quadratic nature of the boundary
conditions. While this increases the amount of algebra, the fundamental
approach is unchanged. Note that because we do not know what the flow
will be as 7 — o0, the potential functions need to include both exterior and
interior harmonics.

For this problem, the potential functions are

b= a [E()?;Eo _ 3(E0T05x)2 iy [TQ(EO e Ey) — 3(Ep e x)2]
b =0 (51)
(Eg o x)? (Eo @ x)

X — STEO +w [37“2(E0 ex)E) — 15(Eq o x)2x}

rf

+0 [ PSRy | 47 (B« Bojx] + x[(Bo » x)B0] + ¢ [22570] (52)

_Azglw

Because [Ej e E] has zero gradient and [%x] is divergence free, they
do not contribute to u or p. Thus, we can immediately set § and o to zero.
Using the “Hinch method,” the velocity field is found to be

u=

(e ) Bem () e

r7 rd

+Eo [(—% — 68 + 25 — 30wr?) (B e %)) . (53)

Notice that the 7 [(Eo e Eg)x] and x [(E( ® x)Eg] terms do not contribute
to the velocity field, so we can set 7 = 0 = x. Applying the boundary
conditions to equation (53), we find that

3a ¥
0= <—F —I—Z,Ba - p) (EO .EO)

H(l o o) @t G
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“A\(Eoen)(Epet) =
(52 - 68a + 2 — 30wa®) (Eo # n)(Eg » t). (55)

Equating the coefficients of (Eq e Ep), (Egen), and (Ej e t) gives the three
equations

B107 ¥
3a 206 0
6o 30¢
— 7 —6Ba+ —p - 30wa® = —\. (58)

We need three more equations to determine unique solution. These can be
found by using Veu = 0.
By the diverence theorem, we know that

/SuondSzo (59)

over any surface, S, containing the entire sphere r = a. Note that we can
ignore the contibution of the surface of the sphere » = a to the a “total”
surface integral because u e n = 0 on the sphere. Taking S to be a sphere
of radius r > a,

0=
Js (2% +26r — %) (Eo « By)dS
+ s (% - 68r — % — 3 — 24r?) (o # n)?dS. (60

Recognizing that [¢dS = 4nr? and [¢(z e n)dS = 4nr? and rearranging, we
see that

0 = drr2(Eq o Eo) (—7 +0_ 208 8wr3> . (61)

2 rd

Since this must hold for any r, we require that v = —6 and £ = 0 = w.
Using these results, the system of equations (56) - (58) simplifies to

3a 0
6
F + 6,6& =\ (63)
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Unfortunately, there is still one degree of freedom. To eliminate this degree
of freedom, we make the assumption that the pressure field around the
sphere is constant because colloidal particles are so small®. Thus, # = 0 so
that

o= >\1—C;4 (64)
A
B = 00" (65)

Plugging the values for all the constants into equation (53), we find that®

u=An B (1 - <%>4> (Ey o Eo) + (%)4 (Eo e n)Q]

—é)\EO (3 +2 (g)4> (Eo o n). (66)

Notice that the flow field is proportional to A\. Thus, a greater flow rate is
achieved by increasing the polarizability of the sphere or the thickness of the
boundary layer. It is also interesting to observe that this velocity field has
the “qualitative” features of Bazant’s theory. Along the axis of the electric
field, fluid is sucked in because the fluid velocity in the axial direction is

u= —ﬂ ll + (%)4] n. (67)

In directions perpendicular to the electric field, fluid flows away from the
sphere because for n perpendicular to Eg

u= METOP ll - (%)4] n (68)

and 1 — (a/r)* > 0 when r > a.

6 Conclusion

In this paper, we have discussed the major theoretical components required
to compute the flow field around a spherical, colloidal particle in an elec-
trolyte solution. To take advantage of the spherical symmetry in the prob-
lem, vector harmonic methods were used whereever possible. It was shown

5This is a MAJOR handwave and probably bogus, but I couldn’t think of anything
else before the project deadline.
5Tt would have been nice to plot the velocity field, but I didn’t have the time.
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that vector harmonic methods give reasonable results even for problems
where the boundary conditions are not linear in the physical parameters of
the problem. Further investigation of the solution found in section 5 is nec-
essary to verify this hypothsis. In particular, a more rigorous way close the
system of equations (62) and (63) needs to be found and the resulting flow
fields should be compared with results derived using other analytic methods.
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