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Introduction

Frank’s formulas [1, 2] provide a sufficient mathematical condition for a planar arrangement of dislocations
to form a grain boundary (i.e., have no long range stresses). Unfortunately, it does not actually provide
a prescription for constructing a dislocation model of grain boundary defined in terms of its macroscopic
parameters (e.g., misorientation, inclination, etc.). While subsequent researchers have reformulated Frank’s
formulas in many ways that bridge the gap between the macro- and meso-scopic descriptions of grain bound-
aries [3], a set of explicit rules for converting between macro- and meso-scopic descriptions of grain boundaries
appears to be lacking from the literature. Moreover, there seems to be some general confusion about what
parameters are required to provide a complete description of a grain boundary at the macroscopic level.
These notes attempts to shed light on both of these issues.

Macroscopic Descriptions of Grain Boundaries

At the macroscopic level, it is often thought that five parameters are sufficient to uniquely define a three-
dimensional grain boundary: the misorientation (3 parameters) and the inclination of the plane (2 parame-
ters) between the neighboring grains. Unfortunately, even if we ignore the three degrees of freedom associated
with the translation of the grains relative to each other1, this description is incomplete. What is missing
from the five parameter description of a grain boundary is the orientation of one of the grains, which requires
three additional parameters2. The key (but subtle) point that is often overlooked, is that the misorientation
only gives the orientations of the grains relative to each other. We need to specify the orientation of one
of the grains in order to uniquely describe the grain boundary. Thus, a complete description of a general
three-dimensional grain boundary requires a total of eight parameters3.

The common approach of specifying only the misorientation of the neighboring grains and the inclination
of the grain boundary is sufficient only when we implicitly assume that both the misorientation and inclination
are specified in a coordinate system attached to one of the grains. In effect, the orientation of one of the grains
has been specified so that a five parameter description of the grain boundary is acceptable. This approach
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1Ignoring these degrees of freedom is usually acceptable because translations by less than one unit cell are negligible at

macro- and meso-scopic length scales.
2In two-dimensions, only one additional parameter is required to specify the orientation of one of the grains.
3A general two-dimensional grain boundary requires a total of three parameters.
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breaks down if one wishes to describe the grain boundary in a coordinate system that is independent of
either of the neighboring grains (e.g., using a simulation coordinate system).

Tilt Grain Boundaries

Tilt grain boundaries are defined by the condition that the misorientation axis lies within the grain boundary.
This condition places one constraint on the misorientation axis, so the number of parameters required to
describe a tilt grain boundary is reduced from eight to seven. Symmetric tilt grain boundaries requires even
fewer parameters to define because the plane of the grain boundary is further constrained to be a mirror
planes for one of the grains. This constraint removes the two degrees of freedom associated with the direction
of the grain boundary normal, so symmetric tilt grain boundaries require only five parameters to be uniquely
defined.

Twist Grain Boundaries

Pure twist grain boundaries are defined by the condition that the misorientation axis is perpendicular to
the grain boundary plane. This constraint eliminates the degrees of freedom for the misorientation axis (or
equivalently the orientation of the grain boundary plane). Thus, twist grain boundaries are uniquely defined
by six parameters.

Dislocation Models of Low-Angle Grain Boundaries

At the mesoscopic level, low-angle grain boundaries can be constructed from arrays of straight dislocations.
These dislocation models of grain boundaries, which were originally developed by Frank, Read, and Shock-
ley [2, 3], are useful starting points for studying the structure and properties of low-angle grain boundaries.
While equilibrium grain boundary structures are not always composed solely of straight dislocation lines,
straight line dislocation models can always be relaxed to obtain equilibrium grain boundary structures.
In this section, we give explicit procedures for constructing dislocation models of several common grain
boundaries.

Tilt Grain Boundaries

One Set of Dislocations

When only a single set of dislocations is used to form a grain boundary, the result is a symmetric tilt
grain boundary. The dislocation model is defined by specifying the Burgers vector, b, the direction of the
dislocation line, ξ̂, and the interdislocation spacing, D. These mesoscopic parameters satisfy the following
conditions:

• the Burgers vector, b, is perpendicular to the grain boundary plane (i.e., b ‖ ν̂);

• ξ̂ is parallel to the misorientation axis, û; and

• D satisfies

D =
|b|

2 sin (θ/2)
. (1)
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These conditions imply that all the dislocations in the array are pure edge dislocations because the Burgers
vector is perpendicular to the dislocation line direction. Notice that the number of mesoscopic parameters
required to specify a symmetric tilt grain boundary using only one set of dislocations is five, which is the
same as the number of parameters required for macroscopic description: 3 for b, 1 for ξ̂, and 1 for D. Note
that there is only one degree of freedom for ξ̂ because it is constrained to lie in the grain boundary plane.

To construct a symmetric tilt grain boundary formed from only a single set of dislocations, we first choose
the Burgers vector, b and the direction of the dislocation lines, ξ̂ so that b · ξ̂ = 0. Once b and ξ̂ are chosen,
the grain boundary normal and misorientation axis are set: ν̂ = b/|b| and û = ξ̂. Finally, we choose the
misorientation angle, θ, between the neighboring grains and compute D using (1).

Two Sets of Dislocations

Dislocation models of general tilt grain boundaries require the use of at least two sets of dislocations. For each
set of dislocations, we specify the Burgers vector, the direction of the dislocation line, and the interdislocation
spacing. Dislocation models composed of two sets of dislocations are defined by b1, b2, ξ̂1, ξ̂2, D1, and D2.
For tilt boundaries, these mesoscopic parameters satisfy the following conditions:

• (b1 × b2) lies in the plane of the grain boundary;

• ξ̂1 and ξ̂2 are both parallel to the misorientation axis, û, which lies in the plane of the grain boundary;
and

• D1 and D2 satisfy

1
2D1 sin (θ/2)

=
b2 · (û× ν̂)
û · (b2 × b1)

(2)

1
2D2 sin (θ/2)

=
−b1 · (û× ν̂)
û · (b2 × b1)

(3)

These conditions reduce the degrees of freedom available to the mesoscopic dislocation parameters by one,
three, and one, respectively. Therefore, the total number of mesoscopic parameters required to describe a
tilt grain boundary is seven, which agrees with the the number of parameters needed to a general tilt grain
boundary at the macroscopic level. Notice that to avoid trivial grain boundaries where θ = 0 or Di = ∞,
(2) and (3) impose certain relationships between b1, b2, û1, û2, ν̂1, and ν̂2:

• (b1 × b2) must not be orthogonal to û; and

• b1 and b2 must not be orthogonal to (û× ν̂).

These constraints do not reduce the number of parameters required to define the dislocation model of the
grain boundary.

To construct general tilt grain boundaries using two sets of dislocations, we first choose the two Burgers
vectors b1 and b2. We are then free to choose the normal vector to the grain boundary plane, ν̂, so that it
satisfies (b1 × b2) · ν̂ = 0. Once we have ν̂, we choose û = ξ̂1 = ξ̂2 such that û · ν̂ = 0 and (b1 × b2) · û 6= 0.
Finally, we choose the misorientation angle, θ, and compute D1 and D2 using (2) and (3).
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Symmetric Tilt Boundaries The mirror symmetry (at the continuum level) of two dislocation models
of symmetric tilt boundaries require that the plane of the grain boundary and the misorientation axis satisfy
special relationships to the Burgers vectors:

ν̂ =
1

|b1|
√

2(1 + cosα)
b1 +

1
|b2|
√

2(1 + cosα)
b2, (4)

û =
b1 × b2
|b1 × b2|

(5)

where α is the angle between b1 and b2. Using the expression in (4) for ν̂, (2) and (3) simplify to

D1 = −
|b1|
√

2(1 + cosα)
2 sin(θ/2)

, D2 = −
|b2|
√

2(1 + cosα)
2 sin(θ/2)

(6)

Note that these expressions also impose a constraint on the interdislocation spacings:

|b1|/D1 = |b2|/D2. (7)

A detailed derivation of these relations is given in Appendix A.
To construct a two dislocation model of a symmetric tilt grain boundary, we first choose the two Burgers

vectors b1 and b2. We then compute the normal to the grain boundary plane using (4). Next, we compute
the misorientation axis (and line directions) using (5). Finally, we choose the misorientation angle, θ, and
compute D1 and D2 using (6). Note that D1 and D2 computed in this manner automatically satisfy (7).
As expected, the specification of a symmetric tilt boundary has two fewer degrees of freedom than the
specification for a general tilt boundary.

Twist Grain Boundaries

Dislocation models of pure twist grain boundaries require the use of at least two sets of dislocations. For
two dislocation models, twist boundaries are characterized by the following conditions:

• both b1 and b2 lie in the plane of the grain boundary;

• both ξ̂1 and ξ̂2 lie in the plane of the grain boundary;

• the misorientation axis, û, is parallel to the grain boundary normal, ν̂; and

• D1 and D2 satisfy

1
2D1| sin (θ/2) |

=
|b2|

|b2 × b1|
(8)

1
2D2| sin (θ/2) |

=
|b1|

|b2 × b1|
(9)

• ξ̂1 and ξ̂2 satisfy

ξ̂1 = −sgn(θ)
(
ν̂ × b2
|b2|

)
(10)

ξ̂2 = sgn(θ)
(
ν̂ × b1
|b1|

)
. (11)
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A detailed derivation of these relations is given in Appendix B.
It is important to point out that these conditions reduce the total number of parameters for the dislocation

model to five, which is less than the number of parameters required for the macroscopic description of
a general twist grain boundary. The reason for this discrepancy is that two dislocation models of twist
boundaries are unable to represent the most general twist boundaries – they boundaries are only able to
represent twist boundaries where the Burgers vectors for the dislocations all lie in the plane of the grain
boundary. In general, twist boundaries need not satisfy this constraint.

Using these conditions, we construct two dislocation models of twist boundaries by first choosing two
Burgers vectors b1 and b2. We then compute the normal to the grain boundary plane and the misorientation
axis as ν̂ = û = b1 × b2. Next, we choose the misorientation angle, θ, and compute D1 and D2 using (8)
and (9). Finally, we compute the directions of the dislocation lines using (10) and (11).

Arbitrary Grain Boundaries

Dislocation models of arbitrary grain boundaries require the use of at least two sets of dislocations. For two
dislocation models, arbitrary grain boundaries are characterized by the following conditions:

• the misorientation axis, û, is parallel to (b1 × b2);

• both ξ̂1 and ξ̂2 lie in the plane of the grain boundary;

• D1 and D2 satisfy

1
2D1| sin (θ/2) |

=
|b2 − ν̂ (ν̂ · b2) |
|b2 × b1|

(12)

1
2D2| sin (θ/2) |

=
|b1 − ν̂ (ν̂ · b1) |
|b2 × b1|

(13)

• ξ̂1 and ξ̂2 satisfy

ξ̂1 = −sgn(θ)
(
ν̂ × b2 − ν̂ (ν̂ · b2)
|b2 − ν̂ (ν̂ · b2)|

)
(14)

ξ̂2 = sgn(θ)
(
ν̂ × b1 − ν̂ (ν̂ · b1)
|b1 − ν̂ (ν̂ · b1)|

)
. (15)

A detailed derivation of these relations is given in Appendix C.
The conditions for two dislocation models of arbitrary grain boundaries leads to a mesoscopic grain

boundary model with only seven free parameters, which is less than the number of parameters required
for the macroscopic description of an arbitrary grain boundary. As with two dislocation models of twist
boundaries, the reason for this discrepancy is that two dislocation models of arbitrary grain boundaries are
only able to represent the a restricted subclass of arbitrary grain boundaries. Three dislocation models are
necessary in order to represent the full range of grain boundaries.

Using these conditions, we construct two dislocation models of arbitrary grain boundaries by first choosing
two Burgers vectors b1 and b2. We then arbitrarily choose a grain boundary normal, ν̂, and calculate the
misorientation axis using û = b1 × b2. Next, we choose the misorientation angle, θ, and compute D1 and
D2 using (12) and (13). Finally, we compute the directions of the dislocation lines using (14) and (15).
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A Derivations for Two Dislocation Model of Symmetric Tilt Grain
Boundaries

The normal to the grain boundary plane, ν̂, and the misorientation axis, û, are calculated in this appendix.
We begin by defining ν̂ as a weighted sum of the Burgers vectors:

ν̂ = w1b1 + w2b2, (16)

with w2
1 + w2

2 = 1. Note that this choice of ν̂ guarantees (b1 × b2) lies in the grain boundary plane because
ν̂ · (b1 × b2) = 0. By geometric reasoning, in order for the tilt grain boundary to be symmetric, we need the
projections of the Burgers vectors onto ν̂ and the directions orthogonal to ν̂ to satisfy

b1
D1
· ν̂ =

b2
D2
· ν̂ (17)

b1
D1
× ν̂ = − b2

D2
× ν̂. (18)

Substituting (16) into these equations, we find that
w1

D1
|b1|2 +

w2

D1
(b1 · b2) =

w1

D2
(b1 · b2) +

w2

D2
|b2|2 (19)

w2

D1
(b1 × b2) = −w1

D2
(b2 × b1). (20)

Rearranging these equations under the assumption that b1 and b2 are not collinear yields the simple relations
|b1|/D1 = |b2|/D2 and w1|b1| = w2|b2|. Recalling that ν̂ should be a unit vector, we find that

w1 =
1

|b1|
√

2 (1 + cosα)
(21)

w2 =
1

|b2|
√

2 (1 + cosα)
, (22)

where α is the angle between b1 and b2.
Assuming that b1 and b2 are linearly independent, (16) and the fact that the misorientation axis lies in

the grain boundary plane for tilt boundaries imply that u must be perpendicular to both Burgers vectors.
Therefore, we may set the misorientation axis using

û =
b1 × b2
|b1 × b2|

(23)

B Derivations for Two Dislocation Model of Twist Grain Bound-
aries

For two dislocation models of twist grain boundaries, Frank’s rules imply that [1]

1
2D1 sin (θ/2)

(ν̂ × ξ̂1) =
b2

|b2 × b1|
(24)

1
2D2 sin (θ/2)

(ν̂ × ξ̂2) =
−b1
|b2 × b1|

. (25)
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To derive the equations for D1 and D2, we take the modulus of these two equations to arrive at (8) and (9).
Substituting these expressions back into (24) and (25) and recognizing that sin(θ/2) and θ have the same
sign, we find that

ν̂ × ξ̂1 = sgn(θ)
(
b2
|b2|

)
(26)

ν̂ × ξ̂2 = −sgn(θ)
(
b1
|b1|

)
. (27)

To solve for ξ̂1 and ξ̂2, we take the cross product of these equations by ν̂ and use the fact that the dislocation
lines lie in the grain boundary plane (i.e., ξ̂i · ν̂ = 0):

ξ̂1 = −sgn(θ)
(
ν̂ × b2
|b2|

)
(28)

ξ̂2 = sgn(θ)
(
ν̂ × b1
|b1|

)
. (29)

C Derivations for Two Dislocation Model of Arbitrary Grain Bound-
aries

For two dislocation models of arbitrary grain boundaries, Frank’s rules imply that [1]

1
2D1 sin (θ/2)

(ν̂ × ξ̂1) =
b2 − ν̂ (ν̂ · b2)
|b2 × b1|

(30)

1
2D2 sin (θ/2)

(ν̂ × ξ̂2) =
−b1 + ν̂ (ν̂ · b1)
|b2 × b1|

. (31)

To derive the equations for D1 and D2, we take the modulus of these two equations to arrive at (12) and
(13). Substituting these expressions back into (30) and (31) and recognizing that sin(θ/2) and θ have the
same sign, we find that

ν̂ × ξ̂1 = sgn(θ)
(
b2 − ν̂ (ν̂ · b2)
|b2 − ν̂ (ν̂ · b2)|

)
(32)

ν̂ × ξ̂2 = −sgn(θ)
(
b1 − ν̂ (ν̂ · b1)
|b1 − ν̂ (ν̂ · b1)|

)
. (33)

To solve for ξ̂1 and ξ̂2, we take the cross product of these equations by ν̂ and use the fact that the dislocation
lines lie in the grain boundary plane (i.e., ξ̂i · ν̂ = 0):

ξ̂1 = −sgn(θ)
(
ν̂ × b2 − ν̂ (ν̂ · b2)
|b2 − ν̂ (ν̂ · b2)|

)
(34)

ξ̂2 = sgn(θ)
(
ν̂ × b1 − ν̂ (ν̂ · b1)
|b1 − ν̂ (ν̂ · b1)|

)
. (35)
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Transformation to Simulation Coordinates

When simulating dislocation models of grain boundaries, it is convenient to use a coordinate system that
differs from the crystal coordinate system. The transformation from the crystal to the simulation coordinate
is straightforward to compute. First, choose an orthogonal basis vectors for the simulation frame, {ê1, ê2, ê3},
in the crystal coordinate system. Then the transformation matrix from the simulation coordinate to the
crystal coordinate system is given by

T = [ê1|ê2|ê3] . (36)

Because this is an orthogonal transformation, the inverse transformation from the crystal to the simulation
coordinate system is simply the transpose of T .

For tilt boundaries, it is natural to choose the following simulation frame:

ê1 = ν̂ , ê2 = û , ê3 = ν̂ × û. (37)

Note that the third coordinate axis for the simulation is chosen to ensure a right-handed, orthogonal coor-
dinate system for the simulation frame.

For twist boundaries, it is natural to choose the ê1 = ν̂. The second coordinate axis for the simulation
can be chosen arbitrarily such that ê2 · ê1 = 0. The third coordinate axis can be computed to ensure a
right-handed, orthogonal coordinate system for the simulation frame: ê3 = ê1 × ê2.
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