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A B S T R A C T

Stochastic models and Monte Carlo (MC) simulations of content uniformity (CU) are powerful tools for assessing 
CU risk without extensive experimental effort. However, simulations are valuable only if they are accurate, used 
appropriately, and embedded within natural operational workflows. Toward these ends, we first analyze a 
stochastic model of tablet formation to develop simple quantitative characterizations of dose regimes based on 
the active pharmaceutical ingredient (API) particle size distribution (PSD) that provide early guidance on CU 
risk. Second, we study a MC simulation of the stochastic tablet formation model to validate the importance of 
selecting upper particle size cutoff diameters used in simulation based on manufacturing processes including a 
margin of safety. Finally, we demonstrate simulation-based PSD engineering and CU risk assessment tools for 
process chemists and formulators designed to fit into common workflows, such as early-stage guidance for PSD 
targets, predicting USP < 905 > pass rates and statistics, and exploring the API PSD parameters and dose 
strengths where CU risk is low.

1. Introduction

Determining the appropriate dosage for a pharmaceutical product is 
a complex process involving numerous factors, with one of the most 
critical being the balance of pharmacological benefits and risks (Zheng, 
2009). This is especially important for highly potent compounds, as high 
potency typically translates to high toxicity. Therefore, researchers must 
identify an optimal dosage to achieve the desired efficacy without 
compromising patient safety. For these highly potent (thus requiring low 
dose) drugs, stringent control measures must be established in the 
manufacturing process to ensure the drug product’s content uniformity 
(CU) – under-dosing renders the drug ineffective while over-dosing in
creases the risks of adverse effects (Park et al., 2013).

The active pharmaceutical ingredient (API) particle size distribution 
(PSD) is the most critical quality attributes impacting the uniformity of 
low-dose drugs (Zheng, 2009). Intuitively, small particles are required to 
enhance the homogeneity of drug product intermediates (e.g., blends). 
In early development, where drug substance supply is limited, scientists 
may opt for the “as-small-as-possible particle size” mindset, leaving 
micronization as the primary option. However, the aggressive me
chanical stresses involved in micronization often results in undesirable 

powder properties such as irregular shape (Rhodes and Seville, 2024), 
agglomeration (Saravanan et al., 2021), high surface energy (Gamble 
et al., 2012; Olusanmi et al., 2014; Saravanan et al., 2021), high cohe
siveness (Schulze, 2021), electrostatics (Lachiver et al., 2006), and 
blending issues (Olusanmi et al., 2014). Defining a particle size speci
fication with performance-oriented goals (e.g., dissolution kinetics, CU) 
while also considering processibility and manufacturing robustness is a 
crucial element of pharmaceutical development. Historically, this has 
been practiced empirically using experiments that offer clear readouts 
(pass/fail CU) in a quantized manner. However, the lengthy unit oper
ations and the high material requirements to enable a formulation scale- 
up make it an impractical exercise to thoroughly verify the appropri
ateness of the specification across a range of processing parameters. 
Instead, a predictive tool to simulate the tablet-making process would 
enable (1) continuous statistics and (2) virtual experimentation of 
numerous “what-if” scenarios. The modeling approach is an effective 
alternative to defining API specifications required to meet the CU 
criteria.

Several publications have established the theoretical foundations for 
stochastic CU models and continuously improved these models through 
evolving mathematics and a changing regulatory landscape. Johnson 
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(Johnson, 1972, Johnson, 1975) derived and validated the correlation 
between drug content variation and API PSD based on a random 
retrieving model that involves ideally mixed particles that follow Pois
son statistics. Johnson’s model can predict the CU of any arbitrary PSD; 
however, the practical implementation proves to be laborious due to 
summation across many particle-size bins. Yalkowsky and Bolton 
(Yalkowsky and Bolton, 1990) addressed this challenge by introducing a 
major assumption, that of log-normal PSD, which streamlined the 
mathematical treatment. This method allows one to use the predicted 
CU variation to calculate the probability of passing USP criteria (USP <
28 > ). While the Yalkowsky-Bolton method was based on less 
commonly used PSD descriptors (arithmetic mean diameter and arith
metic standard deviation), their approach created the possibility of 
setting particle size specifications for a given dosage in an a priori 
manner. Zhang and Johnson (Zhang and Johnson, 1997) later demon
strated similar predictions of the potency distribution based on 
computational tools and complemented by experimental verification.

The equivalence of the Johnson and Yalkowsky-Bolton equations 
under the log-normal PSD assumption was confirmed by Rohrs et al. 
(Rohrs et al., 2006). The CU acceptance criteria at the point of Rohrs’ 
publication were based on a procedure compatible with a statistical 
model involving relatively simple analytical terms. Under the USP < 28 
> framework, the authors derived approximate closed-form expressions 
for the CU acceptance probability in terms of the relative standard de
viation (RSD) of the potency distribution. These expressions entail 
straightforward probability functions and conditional probabilities. The 
nomograph presented by Rohrs et al. (Rohrs et al., 2006) provides easy 
access to gauge the probability of passing the CU test with only three 
formulation-related variables – the target dose (D), volume-based par
ticle size (d50 or d90), and geometric standard deviation of the PSD (σg).

Despite its simplicity, the analytical formulas derived by Rohrs et al. 
(Rohrs et al., 2006) have limited applicability in practice because they 
require the following assumptions: (1) normality of the potency distri
bution (2) a log-normal API PSD, and (3) statistical independence of the 
RSD of a batch of tablets and the event that all the tablets in that batch 
fall within a particular range.

As observed by Rohrs et al. (Rohrs et al., 2006), the first assumption 
breaks down in the low dose regime (relative to the average potency), 
and the second assumption is simply not representative of real-world 
API PSD (Olusanmi et al., 2014). Milling (Seibert et al., 2019) is 
known to broaden the PSD due to a wide spectrum of breakage forces 
that often lead to multimodal and asymmetric distributions. A subse
quent sieving step to remove large particles or agglomerates could 
further truncate and complicate the PSD. The last assumption, which is 
implicit in the derivations, is mathematically invalid because the po
tency of dose strength in a sample affects the RSD of the sample. A more 
rigorous first-principles model that evaluated the contribution of indi
vidual particle-size bins on dose uniformity was proposed by Hilden 
et al. (Hilden et al., 2012). The authors’ derivation indicated that D 
[6,3],2 an uncommon yet readily accessible particle size statistic from 
light scattering measurements, elucidates the relationship between unit 
dose RSD and the API PSD through 

RSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
π
6

D[6,3]3
√

•

̅̅̅̅̅̅̅̅̅̅
ρ

Dose

√

This generalization makes D [6,3] a suitable predictor of unit dosage 
uniformity without any PSD assumptions (i.e., the PSD could be multi
modal), thus addressing a limitation of Rohrs’ model which mandates a 

log-normal PSD (Rohrs et al., 2006).
The harmonization of US Pharmacopeial < 905 > with the European 

and Japanese Pharmacopoeia on the Uniformity of Dosage Units, which 
commenced in 2008 and was updated as recently as 2023 (USP, 2023), 
called for the use of a new system of parameters as the criteria for a two- 
stage assessment process. The current USP < 905 > can be briefly 
summarized in Table 1Δ (Huang and Ku, 2010a; Hudson-Curtis and 
Novick, 2016; USP, 2023).

Implementing USP < 905 > requires several variables whose values 
are determined through a decision-tree process (e.g., M, k, L1, L2). The 
other implication of the replacement of USP < 28 > by the more logi
cally complex USP < 905 > is that simple analytical treatment such as 
Rohrs et al. (Rohrs et al., 2006) and the algebraic manipulation of the 
probability functions are no longer practical. Instead, simulations by 
computational methods for predicting CU acceptance probabilities from 
formulation parameters are more appropriate because they can handle 
the high complexity of the logic and impose fewer assumptions.

Huang and Ku proposed an innovative approach based on the Monte 
Carlo (MC) algorithm (Huang and Ku, 2010a) – a versatile computa
tional technique adopted by many scientific fields, including pharma
ceuticals (Chang, 2010; Martins et al., 2024). MC uses repeated random 
sampling to estimate the probability distribution and statistics of vari
ables in processes that are not (1) easy to predict deterministically or (2) 
inherently depend on random variables. By generating a large number of 
random events and observing the distribution of the results, scientists 
can estimate the likelihood of various outcome scenarios. Huang and Ku 
(Huang and Ku, 2010a) used this methodology and first derived 
analytically the skewness of potency distribution (α3) and coefficient of 
variation (Cv) functions based on random retrieving theory and Poisson 
distribution of API particles in the dosage unit. Their derivation revealed 
a unique sensitivity of α3 and Cv to the dose (both scale as dose-1/2), 
which was vetted through experimental data (Rohrs et al., 2006), and an 
inherent divergence from normality due to positive skewness. The au
thors then applied the MC method to simulate the full potency distri
bution, showing remarkable agreement with theoretical derivation. 
Their investigation proved the breakdown of the normality assumption, 
which gives an overly forgiving estimate of the CU pass rate. The 
simulation results warrant a more stringent control of the PSD and 
dosage variation to accommodate the anisotropy of the data 
distribution.

Table 1 
Criteria for USP < 905 > Uniformity of Dosage Units.

Acceptance Criteria
Stage 1 (n = 10) Stage 2 (n = 30)

AVstage1 ≤ L1 AVstage1 > L1 

AVstage2 ≤ L1Must meet:  
(1–0.01⋅L2)⋅M ≤ Xi ≤ (1 + 0.01⋅L2)⋅M

Acceptance Value (AV)
AV = |M − X| + ks
Parameter Details
M (Reference Value)
If 98.5 % ≤ X‾ ≤ 101.5 % Then M = X‾ (AV = ks)
If X‾ < 98.5 % Then M = 98.5 % (AV = 98.5 % − X‾ + ks)
If X‾ > 101.5 % Then M = 101.5 % (AV = X‾ − 101.5 % + ks)
X‾ (Mean of individual content) X =

1
n
∑n

i=1
Xi

s (Sample standard deviation)
s =

[∑n
i=1(xi − X)2

n − 1

]1
2

k (Acceptability constant)
If n = 10 Then k = 2.4
If n = 30 Then k = 2.0
n (Number of units in a sample)
L1 (Maximum allowed acceptance value) = 15 (unless otherwise specified)
L2 (Maximum allowed range for deviation = 25 (unless otherwise specified)
Xi (Individual contents of the unit dosage tested)

ΔThe target content per dosage unit is assumed to be identical to the manufac
turer’s label claim.

2 For particle size distribution by laser light scattering (LLS) method, the 
calculation of the mean diameter based on different weighing can be general

ized as:D[a, b] =
∑

n•da
∑

n•db. where n is number of particles and d is diameter. As an 

example, a commonly used property for particle size characterization is D [4,3], 
the volume-weighted (De Brouckere) mean diameter.
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A nomograph of the median particle size (d50) vs. the dose limit (D 
(mg)/ρ*) covering a range of typical particle size standard deviation (σ) 
was presented by the authors to map out the target PSD that affords a 99 
% passing rate under USP < 905 > . The nomograph is a convenient and 
powerful tool that synergizes with contemporary development strategy 
(e.g., quality by design (Yu, 2008; Lionberger, 2008) and predictive 
tools (Wang et al., 2019; Parikh et al., 2021)) advocated by the regu
latory authorities. Moreover, an extension of Huang and Ku’s model 
(Huang and Ku, 2010b) that specifically addressed the asymmetry of the 
PSD, a situation most representative of a real API after the milling 
operation, further reveals valuable insight from the simulations. For 
mathematical simplicity, the authors adopted a log-skew-normal (L-S-N) 
distribution proposed by Azzalini (Azzalini 1985, Azzalini 1986) and 
defined an asymmetry parameter ε as 

ε =
lnd90 − lnd50

lnd50 − lnd10 

Including the asymmetry parameter (ε) as an extra variable in the MC 
simulation changed the topology of the nomograph. The authors found 
that the removal of large-size particles by sieving (or equivalently, 
implementing a truncation in the MC simulation) also dramatically 
changes the d50 vs. D/ρ landscape. The exploration of various scenarios 
via modeling effectively allowed the scientists to assess the risk level of 
over or under-potency of low-dosage drugs.

Huang and Ku’s work provides a theoretical foundation and a 
framework to quantitatively connect the CU acceptance outcome with 
formulation parameters and API quality attributes (e.g., dosage, d90/d50, 
asymmetry of PSD). The key merit of the MC approach is that (1) the 
numerical simulation is appliable to any arbitrary PSDs (including 
empirical, multimodal distributions) (2) flexibility to accommodate the 
logic of USP < 905> (or any future revisions) and inclusion of other 
descriptors (e.g., ε) to better reflect reality. Most importantly, the con
straints encountered in previous studies, such as assuming log-normal 
PSD and normality of potency distribution, are easy to relax in a com
puter algorithm.

In this contribution, we build on and complement Huang and Ku’s 
ideas in three main areas. First, we provide a more quantitative 
approach for assessing whether CU risk is present prior to simulation. 
Second, we more carefully evaluate the impact of parameters (e.g., PSD 
upper cutoff diameter) on simulation accuracy and CU risk predictions. 
Finally, we demonstrate how to use the simulation in the context of PSD 
control during crystallization and post-isolation operations (e.g., mill
ing, sieving). More specifically, we identify critical engineering princi
ples when using MC simulations for API and formulation process 
development. 

• We define simple and intuitive quantitative classifications of dose 
regimes based on quantities readily computed from the particle size 
distribution and the target dose strength (Section 2). These dose 
regimes enable early detection of potential CU failure risks and 
provide guidance on process design during API PSD engineering. 
Also, the characterization of dose regimes (e.g., large tablet dose 
variance vs. skewed tablet dose distribution) into different classes 
(even qualitatively) appears to be novel.

• We analyze and validate existing MC simulation algorithms for CU 
using computational convergence studies (Section 3). These studies 
yield critical understanding about the impact of the PSD upper cutoff 
diameter on CU predictions. There are many mathematical and nu
merical details in this section, which are part of our main 
contributions.

• We develop and assess simulation design elements and principles 
that support API particle size engineering (Section 4). Using the in
sights gained from computational experiments and comparison of 
simulation predictions with experimental data, we propose strategies 
for incorporating MC simulations into tablet formulation and API 
manufacturing workflows. We also suggest engineering strategies to 

mitigate risks associated with the deviations between simulation and 
experiment.

2. Theoretical foundations

2.1. Tablet formation model

Following the standard approach (Rohrs et al., 2006; Yalkowsky and 
Bolton, 1990; Huang and Ku, 2010a), we model tablet formation as a 
stochastic process (Pinsky and Karlin, 2011). The dose strength of a 
tablet is the sum of the amounts of API contained in the particles that are 
used to form the tablet, where both the number of particles and the 
amount of API contained in each particle are random variables. This 
stochastic model provides the foundation for analysis of the dose dis
tribution and study of derivative quantities, such as the CU pass rate.

Following Huang and Ku (Huang and Ku, 2010a), the dose strength 
contained in a tablet can be expressed as 

D =
∑n

i=1
wi (1) 

where D is the tablet dose strength, each wi is a random variable equal to 
the amount of API in the i-th particle, and n is a random variable equal to 
the number of particles contained in the tablet. Assuming that all par
ticles are spherical3 and have the same API density, the dose can be 
written in terms of particle diameters di 

D =
∑n

i=1

πρd3
i

6
(2) 

where ρ is the API density (true density based on crystal structure). 
Expressing D in this form shows that the dose distribution is completely 
determined by (1) the API particle size distribution (PSD) and (2) the 
distribution of the number of particles in each tablet.

The API PSD is typically obtained from experimental measurements 
such as light-scattering methods (Gamble et al., 2019). For API produced 
via a crystallization process, the PSD is often observed to resemble a log- 
normal distribution (or a truncated log-normal distribution if a sieving 
step is implemented to remove large particles). The distribution of the 
number of particles n in a tablet is not readily observable. However, 
under the assumptions that (1) API particles do not form strong ag
glomerates (Huang and Ku, 2010a) and (2) the number of particles 
available to form each tablet is much larger than the number of particles 
in a single tablet, the law of rare events suggests that it is reasonable to 
approximate by a Poisson random variable (Pinsky and Karlin, 2011): 

P[n = k] =
λke− λ

k!
, (3) 

where P[n = k] is the probability that the number of particles n is equal 
to k, and λ is the expected value of the Poisson distribution. In the 
context of tablet formation, the parameter λ of the Poisson distribution is 
set so that the average dose is equal to the target dose strength D0: 

D0 = 〈D〉 = 〈n〉〈w〉 = λ〈w〉. (4) 

In other words, we set λ equal to D0/〈w〉, where 〈w〉, the average amount 
of API contained in a single API particle, can be computed from the PSD.

2.2. Analytical formulas for moments of the dose distribution

Within the framework of the stochastic tablet formation model, it is 
straightforward to derive analytical formulas for several of the moments 
of the dose distribution. These formulas are useful for providing a 

3 Spherical particle is an essential assumption for the development of this 
model for mathematical simplicity. It should be noted that deviation from the 
spherical shape inevitably leads to variance of model predictions.

K.T. Chu et al.                                                                                                                                                                                                                                   International Journal of Pharmaceutics 684 (2025) 126132 

3 



theoretical foundation for assessing content uniformity risks (Section 
2.3), validating simulation methodology (Section 3.2), and testing 
software implementations.

Following Huang and Ku, we express the dose distribution in terms of 
the moments of the particle size and particle count distributions (Huang 
and Ku, 2010a): 

Var(D) = 〈(D − D0)
2
〉 = 〈n〉Var(w)+Var(n)〈w〉

2 (5a) 

μ3(D) = 〈(D − D0)
3
〉 = 〈n〉μ3(w)+3〈w〉Var(w)Var(n) + μ3(n)〈w〉

3 (5b) 

where Var(X) and μ3(X) are the variance and third central moment of the 
random variable X, respectively. Under the Poisson approximation for 
the particle count distribution, these expressions simplify to 

Var(D) = λ〈w2〉 (6a) 

μ3(D) = λ〈w3〉 (6b) 

because λ = 〈n〉 = Var(n) = μ3(n) when n is a Poisson random variable 
with parameter λ.

Using these formulas to compute the coefficient of variation Cv and 
skewness α3 leads to the theoretical observation that both quantities are 
inversely proportional to the square root of the target dose strength 
(Huang and Ku, 2010a): 

Cv =
Var(D)

1
2

〈D〉
=

1̅̅
̅̅̅̅

D0
√

(
〈w2〉

〈w〉

)1
2

(7a) 

α3 =
μ3(D)

Var(D)
3
2
=

1̅̅
̅̅̅̅

D0
√

(
〈w〉

1
2〈w3〉

〈w2〉
3
2

)

(7b) 

2.3. Dose regimes

Using the analytical formulas for the moments of the dose distribu
tion, we can define dose regimes with distinct characteristics. These dose 
regimes make it possible to assess content uniformity risk and identify 
what types of failures to expect based only on the API PSD (either 
empirical or theoretical) – shifting CU risk management earlier in the 
development cycle (from both laboratory and simulation perspectives).

2.3.1. Dose variance regimes
One component of the USP < 905 > protocol is an estimate of the 

relative standard deviation4 (RSD) for the dose distribution based on a 
sample of tablets from the manufactured batch. More specifically, a 
small multiple of the RSD is required to be less than a specified 
threshold. Thus, we can define dose variance regimes based on whether 
the expected RSD (or equivalently, coefficient of variation Cv) is suffi
ciently small to pass the most conservative USP < 905 > acceptance 
criteria. Combining equation (7a) with the logic for Stage 1 of USP <
905>, we expect that there may be risk passing USP < 905 > when 
target dose strengths are too small: 

D0≲
(

2.4
0.15

)2(
〈w2〉

〈w〉

)

(8a) 

where the constants 2.4 and 0.15 come from the values of k and L1 in 
Stage 1 of USP < 905> (Table 1). When condition (8a) is satisfied, the ks 
term in the AV formula exceeds the L1 limit for passing USP < 905 >
during Stage 1.

Conversely, if the target dose strength is sufficiently large, there is 
little risk of USP < 905 > failure due to large dose variances: 

D0≫
(

2.4
0.15

)2(
〈w2〉

〈w〉

)

(8b) 

2.3.2. Dose skew regimes
For sufficiently high dose tablets (e.g., 200 mg), the dose distribution 

is well-approximated by a normal distribution – because the tablet dose 
is the sum of a large number of independent API amounts. At lower 
doses, the distribution is skewed (Huang and Ku, 2010a). When that 
happens, analytical approaches for assessing CU failure risk may not be 
sufficiently accurate in providing meaningful guidance, and simulation 
approaches are needed to determine CU failure risk accurately.

From equation (7b) for the skewness α3 (which must equal 0 for 
Gaussian distributions), we expect that the dose distribution should 
deviate from normality (with high skew) at small dose strengths: 

D0≲
〈w〉〈w3〉

2

〈w2〉
3 (9a) 

Conversely, if the target dose strength is sufficiently large, the dose 
distribution is expected to be close to normal: 

D0≫
〈w〉〈w3〉

2

〈w2〉
3 (9b) 

2.3.3. Particle count characterization of target dose regimes
The dose regimes can also be characterized by the typical number of 

particles used to form a tablet (rather than the target dose D0). Using 〈v〉
as a reference value for the particle volume, the number of particles 
needed to form a tablet is equal to 

n* =
D0

ρ〈v〉 (10) 

where ρ is the API density and v is the volume of a single particle. 
Combining this equation with the relationship between API mass and 
particle volume (i.e., 〈w〉 = ρ〈v〉) leads to a characterization of dose 
regimes expressed in terms of the number of particles per tablet. The 
relative dose variance Cv is expected to be large when 

n*≲
(

2.4
0.15

)2(
〈v2〉

〈v〉2

)

(11) 

and the probability distribution of the dose strength is expected to 
deviate from normality when 

n*≲
〈v3〉

2

〈v2〉
3 (12) 

2.3.4. Example dose regime estimates for API having a log-normal PSD
As a concrete example of the dose regime assessment described 

above, consider an API with a density of 1 g/cm3 and a log-normal PSD 
with parameters d50 = 10μm and d90 = 25μm. For these values 
(assuming spherical particles), 〈w〉 ≈ 5.2× 10− 6 mg

μm3, 〈w2〉 ≈ 2.7×

10− 9
(

mg
μm3

)2
, and 〈w3〉 ≈ 1.4× 10− 10

(
mg

μm3

)3
. For this configuration, the 

Cv is expected to be large for D0 values below ≈ 0.1mg, and the dose 
distribution is expected to deviate from normality for D0 values below 
≈ 5mg. These target dose strengths correspond to tablets with an 
average of ≈ 100 million particles and ≈ 5 billion particles, respectively.

Note that it is not the case that the target dose (D0) where normality 
of the dose distribution breaks down is always greater than the D0 where 
the variance of the dose distribution fails USP < 905 > . As an example of 
the reverse situation, consider an API with a density of 1.25 g/cm3 and a 
log-normal PSD with parameters d50 = 100μm and d90 = 150μm. For 

these parameters, 〈w〉 ≈ 0.001 mg
μm3, 〈w2〉 ≈ 2.6× 10− 6

(
mg

μm3

)2
, and 〈w3〉

4 RSD is defined as the ratio of the standard deviation to the mean of a 
random variable: σ/μ.
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≈ 1.6× 10− 8
(

mg
μm3

)3
. For this configuration, the Cv is expected to be 

large for D0 values below ≈ 0.6mg but the dose distribution is expected 
to deviate from normality for D0 values below ≈ 0.015mg.

These target dose strengths correspond to tablets formed with an 
average of ≈ 500 million particles and ≈ 10 million particles, respec
tively.

3. Monte Carlo simulations for content uniformity

In general, computational approaches are necessary to transform the 
tablet formation model described in Section 2 into practical information 
(e.g., content uniformity pass rates) because (1) empirical API PSDs are 
often not well-described by simple mathematical functions amenable to 
analytical manipulation, and (2) USP < 905>, the current CU test pro
tocol, involves logic that complicates direct mathematical analysis.

3.1. Simulation algorithm

Following Huang and Ku (Huang and Ku, 2010a), we employ nested 
MC simulations: an inner MC simulation to generate a tablet batch that is 
used in an outer MC simulation to sample the distribution of USP < 905 
> outcomes. The high-level flow of the simulation is illustrated in Fig. 1.

For the outer MC simulation, we repeatedly perform the USP < 905 
> protocol to collect data on the outcomes (e.g., pass rate and distri
bution of acceptance values (AV)). For the inner MC simulation, tablet 
dose strengths are generated using the following multi-step process 
(Huang and Ku, 2010a). 

1. Specify the particle size distribution. Suppose the PSD is well- 
approximated by a truncated log-normal distribution. In that case, 
we fit the empirical PSD data to a log-normal distribution and select 
truncation diameters that are consistent with the parameters of the 
API preparation process. In situations where the PSD is not well- 
approximated by a truncated log-normal distribution, we use the 
empirical PSD directly when simulating tablet formation.

2. Construct a discrete approximation to the PSD. Following Huang 
and Ku (Huang and Ku, 2010a), we discretize the PSD by con
structing 100 diameter intervals and computing the probability of 
drawing a particle from each interval. If the PSD is specified by a 
truncated log-normal distribution, the diameter intervals are equally 
spaced in log-diameter space. Otherwise, the diameter intervals are 
defined by the instrument used to collect the empirical PSD.

3. Compute volume fractions. For each interval of the discretized 
PSD, we compute the approximate volume fraction of particles with 
diameters that fall within the interval. For this calculation, we make 

the following assumptions: (1) Particles are spherical. (2) The 
diameter of all particles in each interval is equal to the center of the 
interval.

4. Generate the tablet batch. Using the diameter intervals of the 
discrete approximation to the PSD and their volume fractions, we 
simulate the manufacturing of a batch of tablets. To generate a single 
tablet, we use the following procedure:

a. Compute the average number of particles to be selected from each 

diameter interval: 
(

D0
ρVk

)

fk, where Vk is the volume of each API par

ticle in the k-th diameter interval and fk is the fraction of API particle 
volume contained in k-th diameter interval of the PSD.5

b. For each diameter interval, randomly select the number of particles 
to use from the interval. For the k-th bin, the Poisson distribution 
parameter λk is set to the average number of particles to select from 
the interval.

c. Compute the dose strength of the tablet by summing the amount of 
API contributed from each diameter interval.

3.2. Upper particle size cutoff strongly impacts simulation predictions

When developing simulations for theoretical API PSDs that extend to 
infinity (e.g., exponential and Gaussian distributions), we must truncate 
the probability distribution at a finite value that is “large enough” to 
minimize simulation artifacts. For PSDs with “fat tails” (e.g., log-normal 
distribution), the upper particle size cutoff strongly affects simulation 
predictions. The impact of the cutoff value has been previously observed 
(Huang and Ku, 2010b), but a quantitative analysis of simulation error 
appears to be absent from the literature. To improve our confidence that 
simulations yield meaningful results, we performed a numerical 
convergence study of errors in the moments of the dose distribution as a 
function of particle size cutoff (Section 3.2.1). Additionally, we sys
tematically assessed the impact of the particle size cutoff on USP < 905 
> pass rates (Section 3.2.2).

3.2.1. Accurate moments of dose distribution requires high upper particle 
size cutoff

For the numerical convergence study, we assume a log-normal dis
tribution for the API PSD because analytical formulas are readily 
available for the moments of the log-normal distribution. The mathe
matical simplicity also allows the log-normal distribution to serve as a 

Fig. 1. Logical flow of a content uniformity simulation based on nested Monte Carlo algorithms. The first Monte Carlo simulation generates a tablet batch based on 
the tablet formation model. The second Monte Carlo algorithm simulates the USP < 905 > protocol to sample the distribution of USP < 905 > outcomes.

5 Here, k is an index on the diameter interval, not an index on the API particle 
that is incorporated into the tablet.
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canonical example for understanding the impact of PSD with “fat 
tails.”6.

Equations (4), (5), and (6) show that the moments of the dose 
strength can be expressed as the expected value of powers of the API 
mass in a single API particle. Since API mass per particle is directly 
related to the particle volume, we designed our convergence study to 
investigate the dependence of the accuracy of numerical quadrature 

formulas for 〈V〉, 〈V2〉, and 〈V3〉 on the particle size cutoff. For each of 
these quantities, we (1) varied both the lower and upper particle size 
cutoff diameters, (2) numerically evaluated the integral for the expec
tation value, (3) computed the relative error of the numerical calcula
tions to the analytical formula for the expectation value, and (4) 
examined the dependence of the relative error on the lower or upper 
cutoff diameters. All numerical integration calculations were performed 
on a uniform grid with 1000 grid points in log-diameter space, which we 
confirmed produced numerical results accurate to be within machine 
precision in double-precision floating point arithmetic.

For the lower PSD cutoff diameter, the relative error decreases as the 
cutoff value approaches 0 and the 〈V〉, 〈V2〉, and 〈V3〉 values converge at 
comparable rates as the lower cutoff is decreased (Fig. 2). This result is 
not surprising because extremely small API particles do not significantly 
impact the expectation values.

For the upper cutoff diameter, the relative error decreases as the 
cutoff value approaches infinity (Fig. 3). Unlike the lower cutoff, the 
convergence rates for the upper cutoff are not the same for different 
moments of the volume – higher moments require larger cutoffs for a 
fixed level of accuracy. For the example shown in Fig. 3, a modest 
relative error of 10-4 for all three moments requires using an incredibly 
large upper cutoff of ≈ d50σ15

g , which for the PSD parameters d50 =

10μm and σg = 3 used in the study is equal to 143m!
The main conclusion of the numerical convergence study is that to 

accurately compute the moments of the dose distribution when the PSD 
has a log-normal distribution (or any distribution with a “fat tail”), we 
must use very (unrealistically) large upper cutoff diameters. In practice, 
PSDs never have distributions that extend to infinity because the API 
manufacturing process typically involves steps that remove large parti
cles. Therefore, whenever theoretical PSDs are used, they must always 
be appropriately truncated for simulation predictions to be practically 
meaningful.

3.2.2. USP < 905 > pass rate is highly sensitive to the upper particle size 
cutoff

The numerical convergence study above demonstrates that the upper 
cutoff diameter for a PSD with a log-normal distribution strongly affects 

Fig. 2. The relative error of 〈V〉, 〈V2〉, and 〈V3〉 as a function of exponent on σg 

used to set the lower cutoff diameter. For these calculations, d50 = 10μm, σg =

3, and the upper cutoff diameter was set to d50σ20
g (chosen large enough that 

the upper cutoff does not affect the error). Observe that the convergence rates 
for 〈V〉, 〈V2〉, and 〈V3〉 are all comparable.

Fig. 3. The relative error of 〈V〉, 〈V2〉, and 〈V3〉 as a function of exponent on σg 

used to set the upper cutoff diameter. For these calculations, d50 = 10μm, σg =

3, and the lower cutoff diameter was set to d50σ− 10
g (chosen small enough that 

the lower cutoff does not affect the error). Observe that larger cutoffs are 
needed for the error of higher moments 〈V〉, 〈V2〉, and 〈V3〉 to converge. This 
behavior arises because the fat tail of the log-normal distribution results in large 
API particles making a significant contribution to the moments, with larger 
contributions for higher moments.

Fig. 4. The dose variance regimes are evident in the USP < 905 > pass rate 
curves (pass rate vs PSD upper cutoff diameter). In the low dose variance 
regime (dots), USP < 905 > has a high pass rate regardless of the upper cutoff 
diameters. In the medium dose variance regime (dot-dash and dash), the USP <
905 > pass rate is nonzero for all values of the upper cutoff diameter. In the 
high dose variance regime (solid), the USP < 905 > pass rate drops to zero for 
large upper cutoff diameters. These results were obtained for an API with 
density 1 g/cm3 having a log-normal PSD distribution with d50 = 20μm and 
d90 = 50μm.

6 A probability distribution is said to have “fat tails” if a significant fraction of 
the probability is contained in the tails of the distribution.
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the error in the statistics computed for the dose distribution. To gain 
insight into the impact of the upper cutoff diameter on CU test outcomes, 
we investigated the dependence of simulated USP < 905 > pass rates on 
the upper cutoff diameter for a range of log-normal distribution pa
rameters and target dose strengths.

In general, the USP < 905 > pass rate decreases as the PSD upper 

cutoff diameter increases (Fig. 4, Fig. 5, Fig. 6, and Fig. 7). This obser
vation is consistent with physical intuition7 – a large upper cutoff 
diameter increases the probability of incorporating a large API particle 
into a tablet, thus increasing the probability of failing USP < 905 > . The 
pass rate curves can be classified into three distinct types (Fig. 4): (i) the 
USP < 905 > pass rate is near 100 % for all upper cutoff diameters, (ii) 
the USP < 905 > pass rate decreases as the upper cutoff diameter in
creases but is greater than zero even for very large upper cutoff di
ameters, and (iii) the USP < 905 > pass rate decreases and approaches 
zero for very large upper cutoff diameters.

The pass rate curve types are manifestations of the dose variance 
regimes discussed in Section 2.3.1. In the low dose variance regime (e.g., 
10 mg), the variation between tablets is very low. Therefore, USP < 905 
> almost never fails regardless of the upper cutoff diameter. In the 
medium dose variance regime (e.g., 0.5 mg and 1 mg), the variation in 
the API particle size leads to a wider variance in the tablet dose so that 
USP < 905 > does not always pass. However, the tablet dose variance is 
small enough that USP < 905 > always has a nonzero pass rate even if 
there is no upper cutoff diameter for the PSD. Finally, in the high dose 
variance regime (e.g., 0.1 mg), USP < 905 > always fails if the upper 
cutoff diameter is too large (or not imposed).

An important characteristic of the mid- and high-dose variance re
gimes is that the drop in the USP < 905 > pass rate curve is steep (Fig. 4), 
which indicates that CU simulation results are highly sensitive to the 
choice of upper cutoff diameter – too low a cutoff produces overly 
optimistic predictions while too high a cutoff leads to overly pessimistic 
predictions. This observation underscores the importance of selecting an 
appropriate API PSD upper cutoff diameter when using MC simulations 
to predict USP < 905 > outcomes.

Examining how the pass rate curve varies with PSD variance (Fig. 5) 
and dose strength (Fig. 6) provides useful insights for PSD engineering. 
When the dose strength is fixed (e.g., 1 mg), the pass rate curve shifts to 
the left as the PSD variance – which can be characterized by the ratio 
d90/d50 – increases (Fig. 5). However, the pass rate curves bunch 
together eventually, which suggests that it should be possible to estimate 
(as a function of the API PSD and target dose strength) a suitable upper 
cutoff diameter required to achieve a desired USP < 905 > pass rate. For 

Fig. 5. API PSD variance dependence of the USP < 905 > pass rate curves (pass 
rate vs PSD upper cutoff diameter) for a fixed dose strength. In the low dose 
variance regime (dash and dot-dot dash), the USP < 905 > pass rate is nonzero 
even at large upper cutoff diameters. In the high dose variance regime (solid, 
dot and dot-dash), the USP < 905 > pass rate curve has a steep drop to zero as 
the upper cutoff diameter increases. Observe that the pass rate curves in the 
high dose variance regime are bunched together. These results were obtained 
for an API with density 1g/cm3 having a log-normal PSD distribution with 
d50 = 20μm when the target dose strength is D0 = 1 mg.

Fig. 6. Dose strength dependence of the USP < 905 > pass rate curves (pass 
rate vs PSD upper cutoff diameter) in the high dose variance regime (origi
nating from high API PSD variance). Observe that the USP < 905 > pass rate 
curve has a steep drop to zero as the upper cutoff diameter increases for all dose 
strengths and that upper cutoff diameter where the drop occurs appears to be 
approximately logarithmic in the dose strength. These results were obtained for 
an API with density 1 g/cm3 having a log-normal PSD distribution with d50 =

10μm and d90 = 100μm.

Fig. 7. In the high dose variance regime, the upper cutoff diameter (for a 95 % 
USP < 905 > pass rate) is proportional to a power of the dose strength with 
exponent slightly larger than 1/3 (indicated by the slope of 0.34 on the log–log 
plot). These results were obtained for an API with density 1 g/cm3 having a log- 
normal PSD distribution with d50 = 10μm and d90 = 100μm.

7 This intuition has long been used by formulators to reduce the risk of 
content uniformity test failure.
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a fixed PSD variance in the high dose variance regime, the USP < 905 >
pass rate curves at different dose strengths yield a predictive relation
ship. The pass rate curve shifts to the right as the dose strength increases 
with the size of the shift proportional to a power of the dose strength 
with exponent slightly larger than 1/3 (Fig. 6 and Fig. 7). In contrast, 
when we operate in the low dose variance regime, the USP < 905 > pass 
rates for fixed PSD variance remains high for all upper cutoff diameters 
except at extremely low dose strengths (Fig. 8). Except for APIs where 
the particle size distribution has a very low d90/d50 ratio (Fig. 8), suf
ficiently low dose strengths will result in high dose variance.

For the high dose variance regime, a universal relationship between 
the upper particle size cutoff and the dose strength can be found for all 
APIs that have an approximately log-normal particle size distribution. 

By appropriately scaling the variables, the upper cutoff diameter vs dose 
strength curves for different API PSD distributions approximately 
collapse onto a single curve (Fig. 9). Observing that D/(ρd3

50) is pro
portional to the number of API particles contained in a tablet with dose 
strength D, the universal relationship tells us that the upper cutoff 
diameter required to achieve a desired USP < 905 > pass rate is 
approximately proportional to the diameter (in units of d50) of a sphere 
formed from the average number particles contained in a single tablet.

Our study of the impact of upper cutoff diameter on USP < 905 >
pass rates illustrates practical implications of our quantitative dose- 
regime definitions (Section 2.3). It also provides further evidence for 
the need to carefully choose the upper cutoff diameters in CU simula
tions, pointing to opportunities for PSD control strategy using early 
knowledge of API’s properties (Section 4).

4. Simulation-based workflows for drug development and 
manufacturing

Using the insights gained from our theoretical analysis of the tablet 
formation model (Section 2) and simulation validation (Section 3), we 
developed principles and methods for simulation-based API PSD 
engineering.

4.1. Simulation design principles

4.1.1. Use empirical API PSDs whenever possible
In practice, API PSDs can deviate significantly from a log-normal 

distribution. Combined with the sensitivity of simulation results on 
the PSD upper cutoff diameter, we recommend using empirical API PSDs 
for simulations whenever available. To illustrate the difficulty of PSD 
fitting, we examine the discrepancy between simulated and empirical 

Fig. 8. Dose strength dependence of the USP < 905 > pass rate curves (pass 
rate vs PSD upper cutoff diameter) in the low dose variance regime (originating 
from low API PSD variance). Observe that difficulty passing USP < 905 > only 
occurs at very low dose strengths (dash and solid). At low, but not extremely 
low dose strengths (dot and dot-dash), USP < 905 > pass rates remain high 
regardless of the PSD upper cutoff diameter. These results were obtained for an 
API with density 1 g/cm3 having a log-normal PSD distribution with d50 =

10μm and d90 = 15μm.

Fig. 9. Universal upper particle cutoff diameter vs dose strength curve in the 
high dose variance regime for APIs having a log-normal PSD. By scaling the 
upper particle diameter and dose as shown in the figure, the data for a range of 
d50 and d90 values approximately collapse onto a single line (on a log–log pot). 
These results were obtained for an API with density 1 g/cm3 and a 99 % USP <
905 > pass rate.

Table 2 
Target dose strength and (1) observed RSD values for an API with experimentally 
measured PSD. (2) simulated RSD values when upper cutoff diameter was set by 
visual inspection of the PSD.

Target Dose Strength Observed RSD Simulated RSD

1.0 mg 0.2316 0.24
1.5 mg 0.00533 0.02

Fig. 10. Molecular structure of selgantolimod.

Table 3 
Formulation compositions (w/w %) of selgantolimod tablets at 1.0 mg and 1.5 
mg dose strength.

Component 1.0 mg 1.5 mg Source of 
materials

Selgantolimod 1.00 1.50 Gilead
Microcrystalline Cellulose (Avicel 

PH101)
61.75 61.25 FMC

Mannitol Pearlitol 100SD 31.25 31.25 Roquette
Crospovidone (Kollidon CL) 5.00 5.00 BASF SE
Magnesium Sterate 1.00 1.00 Merck
Total 100 100 ​
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RSD for the experimental dataset in Table 2 (Observed RSD column). 
The experimental dataset was extracted from two batches of selganto
limod (Mackman et al., 2020; Gane et al., 2023) manufactured at 1.0 mg 
and 1.5 mg strength, respectively. The molecular structure of selganto
limod is shown in Fig. 10 and the composition of the formulations is 
summarized in Table 3.

We used the following two approaches to fit the empirical PSD. In 
both approaches, we first fit the empirical PSD to a log-normal 
distribution. 

1. Set the upper cutoff diameter based on visual inspection of the 
maximum diameter where the empirical PSD has a nonzero density.

2. Fit the upper cutoff diameter so that the simulated RSD matches the 
experimental RSD for a particular target dose strength.

For the dataset, the API particle size distribution is shown in Fig. 11, 
and the parameters for the best fit log-normal distribution were found to 
be d50: 3.3 µm and σg: 2.7.

When the PSD upper cutoff diameter was set using visual inspection 
of the empirical PSD, we estimated an upper cutoff diameter of 150 µm 
and obtained the results (Simulated RSD column) shown in Table 2.

While the simulated and experimental RSD values are reasonably 
close for the 1.0 mg tablets, it is about an order of magnitude too large 
for the 1.5 mg tablets. When we fit the PSD upper cutoff diameter using 
the experimental RSD value at one dose strength, there was always a 
discrepancy between the simulated and experimental RSD values at the 
other dose strength. Fitting the upper cutoff diameter to the experi
mental RSD for 1.0 mg tablets yielded an upper truncation diameter of 
143.6 µm and an over-prediction of the RSD value for 1.5 mg tablets 
(simulated RSD: 0.01889, experimental RSD: 0.00533). Fitting the 
upper cutoff diameter to the experimental RSD for 1.5 mg tablets yielded 
a much smaller upper cutoff diameter of 50.7 µm but led to the opposite 
problem – under-prediction of the RSD value for 1.0 mg tablets (simu
lated RSD: 0.01889, experimental RSD: 0.00533).

4.1.2. Set the PSD upper cutoff diameter based on API processing
When empirical PSD data is unavailable, we have found the log- 

normal PSD useful for gaining initial insight into potential content 
uniformity risk but only if the PSD upper cutoff diameter is set in a 
physically meaningful manner. For these engineering-oriented content 
uniformity simulations, we recommend using a maximum particle size 
implied by common API processing procedure (e.g., milling and 
sieving). To avoid content uniformity test failures in manufacturing, we 
recommend setting the upper cutoff diameter conservatively to reduce 

the likelihood that an empirical CU test fails even if the simulation 
predicts the content uniformity test has a high pass rate. More specif
ically, since large values of the upper cutoff diameter of the PSD 
decrease USP < 905 > pass rates, we recommend increasing the value of 
the upper cutoff diameter used in simulation to build a margin of safety.

4.2. From CU simulations to PSD engineering tools

To bring the power of CU simulations to process chemists and for
mulators, we developed a collection of PSD engineering tools (delivered 
as a desktop application) that support drug development workflows. 
These workflows provide guidance on target PSD parameters (e.g., d50 
and d90), help assess content uniformity risk, and yield deeper under
standing of the distributions underlying content uniformity statistics (e. 
g., USP < 905 > pass rate).

4.2.1. Early-stage assessment of CU risk
Using the quantitative dose regimes defined in Section 2.3, we can 

assess both (1) the need for CU risk mitigation strategies and (2) whether 
simulations are required to accurately predict USP < 905 > failure rates 

Fig. 11. (a) Experimental particle size distribution of the API by laser light scattering (b)Regression through the cumulative distribution function (CDF) of a log- 

normal distribution, CDF(x) = 1
2+

1
2 erf

[

ln(x)− ln(d50)̅̅
2

√
•ln(σg)

]

by the Levenberg Marquardt algorithm.

Fig. 12. Pass rate region (shaded area) for an API with density 1 g/cm3 with a 
log-normal PSD truncated at 500μm when the target dose strength is D0 = 5 mg 
and the pass rate requirement is 99%. Note that the region above the d50 = d90 

line cannot occur because d50 is never greater than d90.
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(or if analytical estimates are sufficient). For example, when the API 
density is 1 g/cm3 and the empirical API PSD is expected to be well- 
approximated by a log-normal distribution with d50 = 10μm and 
d90 = 25μm, the ratio in Equation (8) is about 0.1 and the ratio in 
Equation (9) is about 5. If the target dose strength is 10mg, the drug 
product is in the low dose variance regime (because 10 > 0.1) and low 
dose skew regime (because 10 > 5), so we would expect CU risk to be 
low.

4.2.2. Early-stage target PSD guidance
Even before empirical API PSD data is available, we can utilize 

simulations to guide API process development by providing PSD targets 
based on available early-stage information: API density, projected tablet 
dose strengths, and desired USP < 905 > pass rate. For analysis at this 

stage of development, we assume that the PSD is a truncated log-normal.
For a specified upper cutoff diameter (selected with an engineering 

safety margin8), we can use simulations over a range of d50 and d90 
values to identify the PSD parameters where the USP < 905 > pass rate 
meets our requirements (Fig. 12).

For APIs with approximately log-normal particle size distribution, 
we can, when operating in the high dose variance regime (Section 2.3), 
select a suitable upper particle size cutoff by using the relationship be
tween target dose strengths and upper particle size cutoffs required to 
achieve a desired USP < 905 > pass rate (Fig. 13). Knowledge of the 
initial ratio of d90 to d50 (before milling or sieving) allows us to estimate 
the required upper particle cutoff diameter from the target dose strength 
or vice-versa.9 It is worth reiterating that this predictive graph is 
appropriate only in the high dose variance regime – for instance, when D 
is less than 0.1 of the ratio in Equation (8) – and for APIs with approx
imately log-normal particle size distributions.

4.2.3. Content uniformity risk assessment
Simulations are a valuable tool in the context of content uniformity 

risk assessment because they provide estimates of failure rates without 
requiring extensive laboratory resources. Using either experimental PSD 
or theoretical PSD specifications, we can use simulations to predict the 
USP < 905 > pass rate and investigate the origin of failures. For 
instance, it is straightforward to extract the tablet dose distribution 

(Fig. 14) and USP < 905 > acceptance value distributions (Fig. 15) from 
the simulations. Alternatively, for a particular API batch, we could gain 
insight into dose strengths that would have acceptable content unifor
mity failure risk (Fig. 16).

5. Conclusions

CU models and simulations can be powerful tools for process/ 
analytical chemists and formulators, enabling them to assess content 

Fig. 13. The universal scaling relationship between the upper particle size 
cutoff and the dose strength can be used to guide selection of sieving param
eters given knowledge of the target dose strength and API PSD parameters when 
operating in the high dose variance regime. This figure shows the particle size 
upper cutoff diameter needed to achieve a target USP < 905 > pass rate of 99% 
for an API with density 1 g/cm3 having a log-normal PSD distribution.

Fig. 14. Examples of tablet dose distributions constructed using data from CU simulations (Section 3). These distributions were generated for an API with density 
1 g/cm3 having a log-normal PSD distribution with d50 = 50 μm, d90 = 150 μm, and an upper cutoff of 500 μm. The figure on the left shows a low dose variance and 
low dose skew scenario (D0 = 5 mg). The figure on the right shows a high dose variance and high dose skew scenario (D0 = 0.1 mg).

8 A reasonable choice for the upper cutoff diameter is any value larger than 
the expected maximum particle diameter after sieving.

9 Note that the axes on the nomograph are dimensionless. The scaling for the 
target dose strength is chosen to give good separation between the lines for 
different values of d90/d50. Interestingly, the dimensionless target dose strength 
is qualitatively similar to the inverse of the square of the coefficient of variance 
C2

v .
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uniformity risk without extensive experimental effort. However, simu
lations are only valuable if they are accurate, used appropriately, and 
embedded within natural operational workflows. With these goals in 
mind, we have developed quantitative characterizations of dose re
gimes, systematically validated a nested MC simulation (for numerical 
accuracy, prediction impact, and agreement with experimental data), 
and developed engineering guidelines and tools for process chemists and 
formulators.

Dose regimes facilitate early assessment of CU risk (even before 
running simulations). If the estimated dose regime is far outside of the 
CU risk range, there may be little need for concern about content uni
formity, reducing the need for significant experimental or simulation 
effort. Note that the dose regimes are useful for both experimental PSD 
data and theoretical PSD models.

Our investigation of the MC simulations revealed that it is critical to 
appropriately set the PSD upper particle size cutoff diameter in the 
simulations. In all our validation studies, we found that the upper par
ticle size cutoff diameter dramatically impacts simulation predictions. 
Therefore, we recommend (1) choosing upper particle size cutoff 

diameters based on an understanding of the maximum particle size ex
pected from the API processing procedure and (2) increasing the simu
lation value to include a margin of safety.

Finally, we presented simulation-based PSD engineering and CU risk 
assessment tools for formulators. These tools were designed to fit into 
common workflows, such as early-stage guidance for PSD parameter 
targets, predicting USP < 905 > pass rates and statistics (either before or 
after experimental PSD data is available), and exploring the API PSD 
characteristics and dose strengths space where CU risk is low.

5.1. Future research directions

There are several research directions that could lead to further 
improvement of the stochastic model and MC simulation approach 
presented in this paper. Important aspects of tablet formation to improve 
include: (1) accounting for API particle morphology and (2) incorpo
rating the impact of the excipient during tablet formation. For the 
former, further research is needed to develop methods to quantitatively 
characterize API morphology. For the latter, further research is required 
to develop (1) mixing and blending models and (2) quantitative char
acterizations of API-excipient blends. In both cases, the final step would 
be to integrate API morphology and API-excipient blend parameters into 
the the existing stochastic model for tablet formation.
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Appendix 

A. Notation 

• Cv: coefficient of variation
• d50: median of particle size distribution
• dX: X-th percentile of the particle size distribution
• D: tablet dose strength
• D0: target dose strength
• ρ: density of material (g/cm3)
• μ: log of the median (geometric mean) for a log-normal distribution
• σg: geometric standard deviation for a log-normal distribution
• Probability of event E: P[E]
• Expected value of random variable X: 〈X〉
• Variance of random variable X: Var(X)

B. Moments of the particle volume when the diameter has a Log-Normal distribution
The moments of the log-normal distribution can be computed analytically. These analytical formulas are used in the numerical convergence study 

(Section 3.2.1). They are also useful for estimating the dose regime when an API PSD is well approximated by a log-normal distribution.
Assuming that all particles are spheres and the diameter distribution is log-normal with parameters d50 and σg, the expected values of the first three 

powers of the volume V are 

〈V〉 =
πd3

50
6

exp
(

9
2
log2σg

)

〈V2〉 =

(
πd3

50
6

)2

exp
(
18log2σg

)

〈V3〉 =

(
πd3

50
6

)3

exp
(

81
2

log2σg

)

Data availability

Data will be made available on request.
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